Sains Malaysiana 50(9)(2021): 2653-2661

http://doi.org/10.17576/jsm-2021-5009-13

 

Prosedur Pengekstrakan untuk Analisis Logam Berat dalam Tisu Tumbuhan dan Persekitaran Hevea brasiliensis

(Extraction Procedures for Heavy Metals Analysis in Plant Tissues and Surrounding Soils of Hevea brasiliensis)

 

MUHAMMAD JEFRI MOHD YUSOF1, MOHD TALIB LATIF2 & SITI FAIRUS MOHD YUSOFF1*

 

1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Jabatan Sains Bumi dan Persekitaran, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 26 November 2020/Accepted: 17 January 2021

 

ABSTRAK

Pengukuran logam berat dalam sampel tumbuhan berguna untuk menunjukkan kualiti udara persekitaran yang diserap. Walau bagaimanapun, ikatan logam berat dengan matriks organik memerlukan kaedah pengekstrakan yang sesuai untuk melepaskannya kerana cara penjerapan yang berbeza mengikut sampel. Dalam kajian ini, kami meneroka beberapa kaedah pengekstrakan untuk menghasilkan kepekatan logam berat yang maksimum dalam sampel pokokHevea brasiliensis dan tanah sekitarnya di Bentong, Malaysia. Pengesktrakan yang maksimum adalah penting untuk memberikan maklumat analisis logam berat yang sebenar. Rendaman sejuk, pengekstrakan ultrasonik, pencernaan gelombang mikro, teknik pengeringan abu dan pencernaan asid panas dilakukan dan dibandingkan dengan analisis logam berat dalam sampel tanah, daun, kulit pokok dan lateks. Seterusnya, kandungan logam berat tersebut dikuantifikasi menggunakanspektrofotometer pancaran plasma-gandingan aruhan (ICP-OES). Hasilnya, setiap sampel didapati memerlukan kaedah pencernaan yang eksklusif untuk mengekstrak logam berat dengan jumlah tertinggi. Teknik pencernaan asid panas dan pengeringan abu adalah kaedah pencernaan yang paling sesuai, masing-masing untuk tanah dan getah, manakala pencernaan gelombang mikro mengekstrak logam paling berat dalam sampel daun dan kulit pokok. Antara semua sampel tanaman, daun memerangkap paling banyak logam paling berat (767.4 mg/kg) diikuti oleh kulit kayu (600.2 mg/kg) dan lateks (185.4 mg/kg). Analisis logam berat melaporkan nilai faktor pengayaan (EF) logam berat yang tinggi (EF > 10) menerangkan kepekatan logam berat yang tinggi dalam setiap sampel. Selain itu, pengiraan faktor biokepekatan (BCF) membuktikan bahawa logam berat dalam sampel datang daripada sampel tanah melalui sistem akar pokok apabila nilai BCF > 1.

 

Kata kunci: Biomonitor; Hevea brasiliensis; logam berat; pencernaan asid; pengekstrakan

 

ABSTRACT

The quantification of heavy metals in plant’s samples is useful to imply the quality of environmental air that is being absorbed. However, the binding of heavy metals with organic matrices requires suitable extraction method to leach them apart due to different adsorption manners. In this study, we explored several extraction methods to yield maximum concentrations of heavy metals in plant samples of Hevea brasiliensis and its surrounding soils in Bentong, Malaysia. This is crucial to obtain precise output for heavy metals analysis. Maceration, ultrasonic extraction, acid-assisted microwave digestion, ash drying technique, and hot acid digestion were performed and compared on our heavy metals analysis in soils, leaves, tree barks and latex. Next, the heavy metals contents in those samples were quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES). As a result, each sample demanded their exclusive digestion method to extract the highest amounts of heavy metals. Hot acid digestion and ash drying technique were the most suitable digestion method for soils and latex, respectively, whereby, microwave-assisted acid digestion extracted the most heavy metals in both leaves and tree barks. Of all plant samples, leaves trapped the most heavy metals (767.4 mg/kg) followed by tree barks (600.2 mg/kg) and latex (185.4 mg/kg). High enrichment factor, EF (EF > 10) justified the increased heavy metals in each sample. Besides, bioconcentration factor (BCF) with the value above 1 proved that the heavy metals in plant’s samples were up took from soils via root system.

 

Keywords: Acid digestion; biomonitoring; extraction; heavy metals; Hevea brasiliensis

 

REFERENCES

Ahmed, S.A. 2009. Extraction of NOx and determination of nitrate by acid reduction in water, soil, excreta, feed, vegetables and plant materials. Journal of Applied Sciences and Environmental Management13(3): 57-63.

Al‐Alawi, M.T.M., Batarseh, M.I., Carreras, H., Alawi, M., Jiries, A. & Charlesworth, S.M. 2007. Aleppo pine bark as a biomonitor of atmospheric pollution in the arid environment of Jordan. CLEAN-Soil, Air, Water 35(5): 438-443.

Almasoud, F.I., Usman, A.R. & Al-Farraj, A.S. 2015. Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: Analysis and assessment using enrichment factor and multivariate analysis. Arabian Journal of Geosciences 8(3): 1691-1703.

Arain, M.B., Kazi, T.G., Jamali, M.K., Jalbani, N., Afridi, H.I. & Baig, J.A. 2008. Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: A comparison with modified sequential extraction procedure. Journal of Hazardous Materials 154(1-3): 998-1006.

Ayaz, M., Junaid, M., Subhan, F., Ullah, F., Sadiq, A., Ahmad, S. & Imran, M. 2014. Heavy metals analysis, phytochemical, phytotoxic and anthelmintic investigations of crude methanolic extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC Complementary and Alternative Medicine 14(1): 465.

Chibuike, G.U. & Obiora, S.C. 2014. Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science doi:10.1155/2014/752708.

Chen, L., Shen, M., Ma, A. & Han, W. 2018. Investigation of trace element content in the seeds, pulp, and peel of mashui oranges using microwave digestion and ICP-MS analysis. Biological Trace Element Research 182(1): 152-158.

de Mello, M.L., Fialho, L.L., Pirola, C. & Nóbrega, J.A. 2020. Evaluation of recycle and reuse of nitric acid from sample digests by sub-boiling distillation. Microchemical Journal 157: 105080.

Dogan, Y., Unver, M.C., Ugulu, I., Calis, M. & Durkan, N. 2014. Heavy metal accumulation in the bark and leaves of Juglans regia planted in Artvin City, Turkey. Biotechnology, Biotechnological Equipment 28(4): 643-649.

Factory, T., Gitet, H., Hilawie, M. & Muuz, M. 2016. Bioaccumulation of heavy metals in crop plants grown. Environmental Monitoring and Assessment doi:10.1007/s10661-016-5511-0.

Haque, E., Pahlevani, F., Gorjizadeh, N., Hossain, R. & Sahajwalla, V. 2020. Thermal transformation of end-of-life latex to valuable materials. Journal of Composites Science 4(4): 166.

He, C., Jin, J., Wang, Y., Ma, Z., He, S. & Li, M. 2014. Polybrominated diphenyl ethers, dechlorane plus, and polychlorinated biphenyls in tree bark near the upper Yellow River, China. Environmental Toxicology and Chemistry 33(8): 1732-1738.

Hseu, Z. 2004. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresource Technology 95(1): 53-59.

Kaewtubtim, P., Meeinkuirt, W., Seepom, S. & Pichtel, J. 2016. Heavy metal phytoremediation potential of plant species in a mangrove ecosystem in Pattani Bay, Thailand. Applied Ecology and Environmental Research 14(1): 367-382.

Kaya, G. & Yaman, M. 2012. Determination of trace metals in plant leaves as biomonitor of pollution extent by a sensitive STAT-AAS method. Instrumentation Science & Technology 40(1): 61-74.

Kleckerová, A. & Dočekalová, H. 2014. Dandelion plants as a biomonitor of urban area contamination by heavy metals. International Journal of Environmental Research 8(1): 157-164.

Leong, T., Johansson, L., Juliano, P., McArthur, S.L. & Manasseh, R. 2013. Ultrasonic separation of particulate fluids in small and large scale systems: A review. Industrial & Engineering Chemistry Research 52(47): 16555-16576.

Li, Z., Ma, Z., van der Kuijp, T.J., Yuan, Z. & Huang, L. 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of The Total Environment 468: 843-853.

Liu, T., Liu, B. & Zhang, W. 2014. Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: Its application in soil amendment. Polymer Journal of Environmental Studies 23(1): 271-275.

McLaughlin, M.J., Zarcinas, B.A., Stevens, D.P. & Cook, N. 2000. Soil testing for heavy metals. Communications in Soil Science and Plant Analysis 31(11-14): 1661-1700.

Melo, V.F., Batista, A.H., Gilkes, R.J. & Rate, A.W. 2016. Relationship between heavy metals and minerals extracted from soil clay by standard and novel acid extraction procedures. Environmental Monitoring and Assessment 188(12): 668.

Othman, M., Latif, M.T. & Mohamed, A.F. 2015. The PM10 compositions, sources and health risks assessment in mechanically ventilated office buildings in an urban environment. Air Quality, Atmosphere & Health 9(16): 597-612.

Rajkumar, M., Sandhya, S., Prasad, M.N.V. & Freitas, H. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances 30(6): 1562-1574.

Rashid, H., Fardous, Z., Chowdhury, M.A.Z. & Alam, K. 2016. Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: An evaluation of six digestion methods. Chemistry Central Journal 10(7): 1-13.

Rauret, G. 1998. Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta 46(3): 449-455.

Ricci, B.C., Ferreira, C.D., Marques, L.S., Martins, S.S. & Amaral, M.C.S. 2016. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent. Water Science and Technology 74(2): 367-374.

Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J. & Rahman, P.K. 2019. Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Frontiers in Environmental Science 7: 66.

Sharma, S., Nagpal, A.K. & Kaur, I. 2018. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chemistry 255: 15-22.

Simpson, T. 2017. Field Sampling Quality Control. U.S Environmental Protection Agency, Georgia:.SSD Operating Procedure. SESDRPC-011-R5.

Singh, J., Janardhan, K., Chang, Y., Kang, S. & Yang, J. 2016. A novel reutilization method for automobile shredder residue as an adsorbent for the removal of methylene blue: Mechanisms and heavy metal recovery using an ultrasonically assisted acid. Process Safety and Environmental Protection 99: 88-97.

Thakur, S., Singh, L., Wahid, Z.A., Siddiqui, M.F., Atnaw, S.M. & Din, M.F.M. 2016. Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment 188(4): 206.

Trusheva, B., Trunkova, D. & Bankova, V. 2007. Different extraction methods of biologically active components from propolis: A preliminary study. Chemistry Central Journal 1(1): 13.

Wedepohl, K.H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59(7): 1217-1232.

Wei, L., Zhang, M., Wei, S., Zhang, J., Wang, C. & Liao, W. 2020. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation. Environmental Pollution 259: 113943.

Witters, N., Mendelsohn, R., Passel, S. Van, Slycken, S. Van, Weyens, N. & Schreurs, E. 2011. Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass and Bioenergy 39: 470-477.

Yilmaz, V., Arslan, Z., Hazer, O. & Yilmaz, H. 2014. Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES). Microchemical Journal 114(Supplement C): 65-72.

Zimmerman, A.J. & Weindorf, D.C. 2010. Heavy metal and trace metal analysis in soil by sequential extraction: A review of procedures. International Journal of Analytical Chemistry doi:10.1155/2010/387803.

 

*Corresponding author; email: sitifairus@ukm.edu.my

 

 

           

previous