Sains Malaysiana 50(9)(2021): 2653-2661
http://doi.org/10.17576/jsm-2021-5009-13
Prosedur Pengekstrakan untuk Analisis Logam Berat dalam Tisu Tumbuhan dan Persekitaran Hevea brasiliensis
(Extraction Procedures for Heavy
Metals Analysis in Plant Tissues and Surrounding Soils of Hevea brasiliensis)
MUHAMMAD JEFRI MOHD YUSOF1, MOHD TALIB LATIF2 & SITI FAIRUS MOHD YUSOFF1*
1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Jabatan Sains Bumi dan Persekitaran, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 26
November 2020/Accepted: 17 January 2021
ABSTRAK
Pengukuran logam berat dalam sampel tumbuhan berguna untuk menunjukkan kualiti udara persekitaran yang diserap. Walau bagaimanapun, ikatan logam berat dengan matriks organik memerlukan kaedah pengekstrakan yang sesuai untuk melepaskannya kerana cara penjerapan yang berbeza mengikut sampel. Dalam kajian ini, kami meneroka beberapa kaedah pengekstrakan untuk menghasilkan kepekatan logam berat yang maksimum dalam sampel pokokHevea brasiliensis dan tanah sekitarnya di Bentong, Malaysia. Pengesktrakan yang maksimum adalah penting untuk memberikan maklumat analisis logam berat yang sebenar. Rendaman sejuk, pengekstrakan ultrasonik, pencernaan gelombang mikro, teknik pengeringan abu dan pencernaan asid panas dilakukan dan dibandingkan dengan analisis logam berat dalam sampel tanah, daun, kulit pokok dan lateks. Seterusnya, kandungan logam berat tersebut dikuantifikasi menggunakanspektrofotometer pancaran plasma-gandingan aruhan (ICP-OES). Hasilnya, setiap sampel didapati memerlukan kaedah pencernaan yang eksklusif untuk mengekstrak logam berat dengan jumlah tertinggi. Teknik pencernaan asid panas dan pengeringan abu adalah kaedah pencernaan yang paling sesuai, masing-masing untuk tanah dan getah, manakala pencernaan gelombang mikro mengekstrak logam paling berat dalam sampel daun dan kulit pokok. Antara semua sampel tanaman, daun memerangkap paling banyak logam paling berat (767.4 mg/kg) diikuti oleh kulit kayu (600.2 mg/kg) dan lateks (185.4 mg/kg). Analisis logam berat melaporkan nilai faktor pengayaan (EF) logam berat yang tinggi (EF > 10) menerangkan kepekatan logam berat yang tinggi dalam setiap sampel. Selain itu, pengiraan faktor biokepekatan (BCF) membuktikan bahawa logam berat dalam sampel datang daripada sampel tanah melalui sistem akar pokok apabila nilai BCF > 1.
Kata kunci: Biomonitor; Hevea brasiliensis; logam berat; pencernaan asid; pengekstrakan
ABSTRACT
The
quantification of heavy metals in plant’s samples is useful to imply the
quality of environmental air that is being absorbed. However, the binding of
heavy metals with organic matrices requires suitable extraction method to leach
them apart due to different adsorption manners. In this study, we explored
several extraction methods to yield maximum concentrations of heavy metals in
plant samples of Hevea brasiliensis and its surrounding soils in Bentong, Malaysia. This is crucial to obtain precise output
for heavy metals analysis. Maceration, ultrasonic extraction, acid-assisted
microwave digestion, ash drying technique, and hot acid digestion were
performed and compared on our heavy metals analysis in soils, leaves, tree
barks and latex. Next, the heavy metals contents in those samples were
quantified using inductively coupled plasma optical emission spectroscopy
(ICP-OES). As a result, each sample demanded their exclusive digestion method
to extract the highest amounts of heavy metals. Hot acid digestion and ash
drying technique were the most suitable digestion method for soils and latex,
respectively, whereby, microwave-assisted acid digestion extracted the most heavy metals in both leaves and tree barks. Of all
plant samples, leaves trapped the most heavy metals
(767.4 mg/kg) followed by tree barks (600.2 mg/kg) and latex (185.4 mg/kg).
High enrichment factor, EF (EF > 10) justified the increased heavy metals in
each sample. Besides, bioconcentration factor (BCF) with the value above 1
proved that the heavy metals in plant’s samples were up took from soils via root system.
Keywords: Acid
digestion; biomonitoring; extraction; heavy metals; Hevea brasiliensis
REFERENCES
Ahmed, S.A. 2009. Extraction of NOx and
determination of nitrate by acid reduction in water, soil, excreta, feed,
vegetables and plant materials. Journal
of Applied Sciences and Environmental Management13(3): 57-63.
Al‐Alawi, M.T.M., Batarseh, M.I.,
Carreras, H., Alawi, M., Jiries, A. & Charlesworth, S.M. 2007. Aleppo pine
bark as a biomonitor of atmospheric pollution in the arid environment of
Jordan. CLEAN-Soil, Air, Water 35(5): 438-443.
Almasoud, F.I., Usman, A.R. &
Al-Farraj, A.S. 2015. Heavy metals in the soils of the Arabian Gulf coast
affected by industrial activities: Analysis and assessment using enrichment
factor and multivariate analysis. Arabian Journal of Geosciences 8(3): 1691-1703.
Arain, M.B., Kazi, T.G., Jamali, M.K.,
Jalbani, N., Afridi, H.I. & Baig, J.A. 2008. Speciation of heavy metals in
sediment by conventional, ultrasound and microwave assisted single extraction
methods: A comparison with modified sequential extraction procedure. Journal
of Hazardous Materials 154(1-3):
998-1006.
Ayaz, M., Junaid, M., Subhan, F., Ullah,
F., Sadiq, A., Ahmad, S. & Imran, M. 2014. Heavy metals analysis,
phytochemical, phytotoxic and anthelmintic investigations of crude methanolic
extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC Complementary and Alternative Medicine 14(1): 465.
Chibuike, G.U. & Obiora, S.C. 2014. Heavy metal polluted
soils: Effect on plants and bioremediation methods. Applied and Environmental
Soil Science doi:10.1155/2014/752708.
Chen, L., Shen, M., Ma, A. & Han, W.
2018. Investigation of trace element content in the seeds, pulp, and peel of
mashui oranges using microwave digestion and ICP-MS analysis. Biological
Trace Element Research 182(1):
152-158.
de Mello, M.L., Fialho, L.L., Pirola, C. & Nóbrega, J.A.
2020. Evaluation of recycle and reuse of nitric acid from sample digests by
sub-boiling distillation. Microchemical Journal 157: 105080.
Dogan, Y., Unver, M.C., Ugulu, I., Calis, M. & Durkan, N.
2014. Heavy metal accumulation in the bark and leaves of Juglans regia planted in Artvin City, Turkey. Biotechnology, Biotechnological Equipment 28(4): 643-649.
Factory, T., Gitet, H., Hilawie, M. & Muuz, M. 2016.
Bioaccumulation of heavy metals in crop plants grown. Environmental
Monitoring and Assessment doi:10.1007/s10661-016-5511-0.
Haque, E., Pahlevani, F., Gorjizadeh, N., Hossain, R. &
Sahajwalla, V. 2020. Thermal transformation of end-of-life latex to valuable
materials. Journal of Composites Science 4(4): 166.
He, C., Jin, J., Wang, Y., Ma, Z., He,
S. & Li, M. 2014. Polybrominated diphenyl ethers, dechlorane plus, and
polychlorinated biphenyls in tree bark near the upper Yellow River,
China. Environmental Toxicology and Chemistry 33(8): 1732-1738.
Hseu, Z. 2004. Evaluating heavy metal
contents in nine composts using four digestion methods. Bioresource
Technology 95(1): 53-59.
Kaewtubtim, P., Meeinkuirt, W., Seepom,
S. & Pichtel, J. 2016. Heavy metal phytoremediation potential of plant species
in a mangrove ecosystem in Pattani Bay, Thailand. Applied Ecology and
Environmental Research 14(1):
367-382.
Kaya, G. & Yaman, M. 2012.
Determination of trace metals in plant leaves as biomonitor of pollution extent
by a sensitive STAT-AAS method. Instrumentation Science & Technology 40(1): 61-74.
Kleckerová, A. & Dočekalová, H.
2014. Dandelion plants as a biomonitor of urban area contamination by heavy
metals. International Journal of Environmental Research 8(1): 157-164.
Leong, T., Johansson, L., Juliano, P.,
McArthur, S.L. & Manasseh, R. 2013. Ultrasonic separation of particulate
fluids in small and large scale systems: A review. Industrial &
Engineering Chemistry Research 52(47):
16555-16576.
Li, Z., Ma, Z., van der Kuijp, T.J., Yuan, Z. & Huang, L.
2014. A review of soil heavy metal pollution from mines in China: Pollution and
health risk assessment. Science of The Total Environment 468: 843-853.
Liu, T., Liu, B. & Zhang, W. 2014. Nutrients and heavy
metals in biochar produced by sewage sludge pyrolysis: Its application in soil
amendment. Polymer Journal of Environmental Studies 23(1): 271-275.
McLaughlin, M.J., Zarcinas, B.A.,
Stevens, D.P. & Cook, N. 2000. Soil testing for heavy metals. Communications in Soil Science and Plant
Analysis 31(11-14): 1661-1700.
Melo, V.F., Batista, A.H., Gilkes, R.J. & Rate, A.W.
2016. Relationship between heavy metals and minerals extracted from soil clay
by standard and novel acid extraction procedures. Environmental Monitoring
and Assessment 188(12): 668.
Othman, M., Latif, M.T. & Mohamed, A.F. 2015. The PM10 compositions, sources and health risks assessment in mechanically ventilated
office buildings in an urban environment. Air Quality, Atmosphere &
Health 9(16): 597-612.
Rajkumar, M., Sandhya, S., Prasad,
M.N.V. & Freitas, H. 2012. Perspectives of plant-associated microbes in
heavy metal phytoremediation. Biotechnology Advances 30(6): 1562-1574.
Rashid, H., Fardous, Z., Chowdhury, M.A.Z. & Alam, K.
2016. Determination of heavy metals in the soils of tea plantations and in
fresh and processed tea leaves: An evaluation of six digestion methods. Chemistry
Central Journal 10(7): 1-13.
Rauret, G. 1998. Extraction procedures for the determination
of heavy metals in contaminated soil and sediment. Talanta 46(3): 449-455.
Ricci, B.C., Ferreira, C.D., Marques, L.S., Martins, S.S.
& Amaral, M.C.S. 2016. Assessment of nanofiltration and reverse osmosis
potentialities to recover metals, sulfuric acid, and recycled water from acid
gold mining effluent. Water Science and Technology 74(2): 367-374.
Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam,
A., Sathishkumar, K., Madhavan, J. & Rahman, P.K. 2019. Integrated
remediation processes toward heavy metal removal/recovery from various
environments-a review. Frontiers in Environmental Science 7: 66.
Sharma, S., Nagpal, A.K. & Kaur, I. 2018. Heavy metal
contamination in soil, food crops and associated health risks for residents of
Ropar wetland, Punjab, India and its environs. Food Chemistry 255: 15-22.
Simpson, T. 2017. Field
Sampling Quality Control. U.S Environmental Protection Agency, Georgia:.SSD
Operating Procedure. SESDRPC-011-R5.
Singh, J., Janardhan, K., Chang, Y., Kang, S. & Yang, J.
2016. A novel reutilization method for automobile shredder residue as an
adsorbent for the removal of methylene blue: Mechanisms and heavy metal
recovery using an ultrasonically assisted acid. Process Safety and
Environmental Protection 99:
88-97.
Thakur, S., Singh, L., Wahid, Z.A., Siddiqui, M.F., Atnaw,
S.M. & Din, M.F.M. 2016. Plant-driven removal of heavy metals from soil:
Uptake, translocation, tolerance mechanism, challenges, and future
perspectives. Environmental Monitoring and Assessment 188(4): 206.
Trusheva, B., Trunkova, D. & Bankova, V. 2007. Different
extraction methods of biologically active components from propolis: A
preliminary study. Chemistry Central Journal 1(1): 13.
Wedepohl, K.H. 1995. The composition of the continental
crust. Geochimica et Cosmochimica Acta 59(7): 1217-1232.
Wei, L., Zhang, M., Wei, S., Zhang, J., Wang, C. & Liao,
W. 2020. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with
phytohormones and protein S-nitrosylation. Environmental Pollution 259: 113943.
Witters, N., Mendelsohn, R., Passel, S. Van, Slycken, S. Van,
Weyens, N. & Schreurs, E. 2011. Phytoremediation, a sustainable remediation
technology? II: Economic assessment of CO2 abatement through the use
of phytoremediation crops for renewable energy production. Biomass and
Bioenergy 39: 470-477.
Yilmaz, V., Arslan, Z., Hazer, O. & Yilmaz, H. 2014.
Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer
and determination by inductively coupled plasma optical emission spectroscopy
(ICP-OES). Microchemical Journal 114(Supplement
C): 65-72.
Zimmerman, A.J. & Weindorf, D.C.
2010. Heavy metal and trace metal analysis in soil by sequential extraction: A
review of procedures. International Journal of Analytical Chemistry doi:10.1155/2010/387803.
*Corresponding author; email: sitifairus@ukm.edu.my
|