Sains Malaysiana 50(9)(2021): 2833-2846
http://doi.org/10.17576/jsm-2021-5009-26
Predicting
Index Price Based on the COVID-19 Cases and Deaths
(Peramalan Harga Indeks berasaskan Kes dan Kematian COVID-19)
NUR
SABRINA RAZALI & R. NUR-FIRYAL*
Department of Mathematical Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 31 January 2021/Accepted: 12 May 2021
ABSTRACT
COVID-19
pandemic has impacted global financial market. In this paper, we study the impact
of COVID-19 pandemic on four countries indexes which are United Kingdom, United
States, Japan and Malaysia to see the effect of the spread of the virus on
economy. Based on descriptive analysis, most index market suffer for a short
period of time after the World Health Organization (WHO) declared COVID-19 as a
pandemic on 11 March 2020. However, most markets manage to get back on track
after a few months. We want to see the effect of number of COVID-19 cases and
deaths on the index price because we believe that they will impact the economic
growth of most countries. This will indirectly impact the countries index
market as most businesses could not operate in full scale. Moreover, an
increase in number of cases, most countries had to implement a partial or total
lockdown which then impact the economic growth. Based on our studies, we
conclude that the number of COVID-19 cases and deaths did have an impact on the
four countries index price. Prediction analysis shows that the time series
linear model can predict index price better than ARIMA model that relies on
historical data. As of right now, COVID-19 does have a huge impact on the
countries financial market and economic growth.
Keywords:
ARIMA Model; COVID-19; predictive analysis; time series linear model
ABSTRAK
Pandemik COVID-19 memberi kesan kepada pasaran kewangan global. Dalam
kajian ini, kami mengkaji kesan pandemik COVID-19 kepada empat indeks negara
iaitu United Kingdom, Amerika Syarikat, Jepun dan Malaysia untuk melihat kesan
penyebaran virus ini terhadap ekonomi dan kewangan negara. Berdasarkan analisis
deskriptif, kebanyakan pasaran indeks mengalami kerugian dalam jangka masa
pendek terutama setelah Pertubuhan Kesihatan Sedunia (WHO) mengisytiharkan
COVID-19 sebagai wabak pada 11 Mac 2020. Namun, kebanyakan harga pasaran
meningkat semula setelah beberapa bulan. Dalam kajian ini, kami ingin melihat
kesan jumlah kes dan kematian COVID-19 pada harga indeks kerana kami percaya
bahawa ini akan mempengaruhi pertumbuhan ekonomi kebanyakan negara. Ini secara
tidak langsung akan mempengaruhi pasaran indeks negara kerana kebanyakan
perniagaan tidak dapat beroperasi dalam skala penuh. Peningkatan jumlah kes
juga menyebabkan kebanyakan negara harus melaksanakan penyekatan kepada rakyat
dan perniagaan yang mempengaruhi pertumbuhan ekonomi. Berdasarkan kajian ini,
kami menyimpulkan bahawa jumlah kes dan kematian COVID-19 mempunyai kesan
terhadap harga indeks keempat-empat negara. Analisis ramalan menunjukkan bahawa
model linear siri masa dapat meramalkan harga indeks lebih baik daripada model
ARIMA yang hanya bergantung kepada data masa lampau. COVID-19 mempunyai kesan
besar terhadap pertumbuhan pasaran kewangan dan ekonomi negara.
Kata kunci: Analisis ramalan;
COVID-19; model ARIMA; model linear siri masa
REFERENCES
Albulescu, C.
2020. Coronavirus and Financial Volatility: 40 Days of Fasting and Fear. https://dx.doi.org/10.2139/ssrn.3550630.
Ali,
M., Alam, N. & Rizvi, S.A.R. 2020. Coronavirus
(COVID-19) - An epidemic or pandemic for financial markets. Journal of
Behavioral and Experimental Finance 27: 100341.
Anders, K. 2018. Laboratory Statistics: Methods in Chemistry
and Health Sciences. 2nd ed. Elsevier. pp. 1-140.
Ariyo, A.A., Adewumi, A.O. & Ayo, C.K. 2014. Stock price
prediction using the ARIMA Model. UKSim-AMSS
16th International Conference on Computer Modelling and Simulation, IEEE.
pp. 106-112.
Baker,
S.R., Bloom, N., Davis, S.J., Kost, K., Sammon, M. & Viratyosin, T.
2020. The unprecedented stock market reaction to COVID-19. The Review of
Asset Pricing Studies 10(4): 742-758.
Benvenuto,
D., Giovanetti, M., Vassallo, L., Angeletti,
S. & Ciccozzi, M. 2020. Application of the
ARIMA model on the COVID-19 epidemic dataset. ELSEVIER Data in Brief. 29:
105340.
Cox,
J., Greenwald, D. & Ludvigson, S.C. 2020. What
Explains the COVID-19 Stock Market. Working Paper 27784. National Bureau of
Economic Research.
Dhamo, E.
& Puka, L. 2010. Using the R-package to forecast
time series: ARIMA models and application. In International Conference
Economic & Social Challenges and Problems.
Engelhardt,
N., Krause, M., Neukirchen, D. & Posch, P.N. 2021. Trust and stock market volatility during
the COVID-19 crisis. Financial Research Letter 38: 101873.
Erdem, O.
2020. Freedom and stock market performance during COVID-19 outbreak. Financial
Research Letters 36: 101671.
Fattah,
J., Ezzine, L., Aman, Z., Moussami,
H. & Lachhab, A. 2018. Forecasting of Demand
using ARIMA model. International Journal of Engineering Business Management 10: 1-9.
Investing.com.
Access on December 20, 2020.
Keh, C.G.
& Tan, Y.T. 2021. COVID-19: The impact of government policy responses on
economic activity and stock market performance in Malaysia. Jurnal Ekonomi Malaysia 55(1): 1-11.
Nicola,
M., Alsafi, Z., Sohrabi,
C., Kerwan, A., Al-Jabir, A., Iosifidis,
C., Agha, M., Agha, R., 2020. The socio-economic implications of the
coronavirus and covid-19 pandemic: A review. International Journal of
Surgery 78: 185-193.
Mazur,
M., Dang, M. & Vega, M. 2021. COVID-19 and the March 2020 stock market
crash. Evidence from S&P1500. Financial Research Letters 38: 101690.
Miles,
J. 2014. R squared, adjusted R squared. In Wiley StatsRef:
Statistics Reference Online. DOI: 10.1002/9781118445112.
Siami-Namini, S.
& Siami Namin, A. 2018. Forecasting Economics and Financial Time: ARIMA vs LSTM.arxiv:1803.06386
Swamidass, P.M.
2000. Encyclopedia of Production and Manufacturing Management. Springer
Science & Business Media.
Topcu, M.
& Gulal, O.S. 2020. The impact of COVID-19 on
emerging stock markets. Finance Research Letters 36: 101691.
Wagner,
A. 2020. What the stock market tells us about the post-covid-19 world. Nature
Human Behaviour 4: 440.
doi:10.1038/s41562-020-0869-y.
Westfall,
P.H. & Young, S.S. 1993. Resampling-Based Multiple Testing: Examples and
Methods for P-Value Adjustment. New York: John Wiley & Sons.
Yagli, I.
2021. The impact of COVID-19 on emerging stock market volatility: Empirical
evidence from Borsa Istanbul. Journal of Research
in Economics, Politics & Finance 5: 269-279.
Zhang,
D., Hu, M. & Ji, Q. 2020. Financial markets under the global pandemic of COVID-19. Finance Research Letters 36: 101528.
*Corresponding author; email: nurfiryal@ukm.edu.my
|