Sains Malaysiana 51(11)(2022): 3567-3578
http://doi.org/10.17576/jsm-2022-5111-05
Strategi Pengoptimuman Lanjutan untuk Meningkatkan Penghasilan Biohidrogen
Foto-fermentasi oleh Bakteria Ungu Bukan Sulfur
(Advanced Optimization Strategies to Enhance Photo-fermentative
Biohydrogen Production by Non-Sulfur Purple Bacteria)
MING FOONG TIANG1, ARINA
ATIQAH AZHAR1, MUHAMMAD ALIF FITRI HANIPA1, PEER MOHAMED
ABDUL1,2,*, MOHD SHAIFUL SAJAB1,2, DARMAN NORDIN1, SAFA SENAN MAHMOD1, ABDULLAH AMRU INDERA LUTHFI1 & JAMALIAH MD. JAHIM1,2
1Department of Chemical and Process
Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Research Centre for Sustainable
Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 29 September 2021/ Accepted: 16 June 2022
Abstrak
Proses foto-fermentasi ialah suatu laluan penghasilan hidrogen yang menarik. Walau bagaimanapun, didapati bahawa kecekapan penukaran cahaya dan penghasilan biohidrogen foto-fermentasi oleh bakteria ungu bukan sulfur (PNSB) adalah sangat rendah. Maka, pelbagai pendekatan pengoptimuman telah dikaji bagi meningkatkan penghasilan foto-hidrogen dan prestasi keseluruhannya. Ulasan ini membincangkan strategi pengoptimuman lanjutan untuk meningkatkan penghasilan biohidrogen foto-fermentasi secara menyeluruh. Antara strategi yang dibincangkan merangkumi pengoptimuman makronutrien dalam media penghasilan biohidrogen, faktor abiotik dan rejim pencahayaan semasa proses foto-fermentasi berlaku. Pendekatan ini menunjukkan keputusan positif dalam meningkatkan penghasilan foto-hidrogen oleh
PNSB. Pendekatan gabungan yang mengintegrasikan strategi pengoptimuman individu yang berbeza dipercayai mungkin dapat mendatangkan peningkatan yang sinergistik terhadap produktiviti dan hasil biohidrogen foto-fermentasi oleh PNSB.
Kata kunci: Bakteria ungu bukan sulphur; faktor abiotik; foto-fermentasi; media penghasilan biohidrogen; rejim pencahayaan
Abstract
Photo-fermentation
seems to be an attractive hydrogen production route. However, the light
conversion efficiency and photo-fermentative biohydrogen production of purple
non-sulphur bacteria (PNSB) are suboptimally low, and
hence, various optimisation approaches are investigated to improve overall
performance and photo-hydrogen production. This review presents an overview of
the optimisation strategies applied to enhance the photo-fermentative
biohydrogen production. Among the strategies discussed include the optimisation
of the macronutrient in biohydrogen production medium, abiotic factors and the
lighting regime during photo-fermentation. These approaches show positive
results in the enhancement of photo-hydrogen production by PNSB. It is believed
that the combined approach of integrating individual strategies will be able to
bring synergistic improvement on the productivity and biohydrogen yield of
photo-fermentation by PNSB.
Keywords: Abiotic factors; biohydrogen production medium; lighting regime;
photo-fermentation; purple non-sulphur bacteria
REFERENCES
Abdul,
P.M., Md. Jahim, J., Harun, S., Markom, M., Hassan, O., Mohammad, A.W. &
Asis, A.J. 2013. Biohydrogen production from pentose-rich oil palm empty fruit
bunch molasses: A first trial. International Journal of Hydrogen Energy 38(35): 15693-15699.
Adessi,
A. & De Philippis, R. 2014. Photobioreactor design and illumination systems
for H2 production with anoxygenic photosynthetic bacteria: A review. International Journal of Hydrogen Energy 39(7): 3127-3141.
Akroum-Amrouche,
D., Abdi, N., Lounici, H. & Mameri, N. 2013. Biohydrogen production by dark
and photo-fermentation processes. Proceedings of 2013 International
Renewable and Sustainable Energy Conference. pp. 499-503.
Akroum-Amrouche,
D., Abdi, N., Lounici, H. & Mameri, N. 2011. Effect of physico-chemical
parameters on biohydrogen production and growth characteristics by batch
culture of Rhodobacter sphaeroides CIP
60.6. Applied Energy 88(6): 2130-2135.
Androga,
D.D., Sevinç, P., Koku, H., Yücel, M., Gündüz, U., Eroǧlu, I. &
Eroglu, I. 2014. Optimization of temperature and light intensity for improved
photofermentative hydrogen production using Rhodobacter
capsulatus DSM 1710. International Journal of Hydrogen Energy 39(6):
2472-2480.
Anwar,
M., Lou, S., Chen, L., Li, H. & Hu, Z. 2019. Recent advancement and
strategy on bio-hydrogen production from photosynthetic microalgae. Bioresource
Technology 292: 121972.
Argun,
H. & Kargi, F. 2010a. Effects of light source, intensity and lighting
regime on bio-hydrogen production from ground wheat starch by combined dark and
photo-fermentations. International Journal of Hydrogen Energy 35(4):
1604-1612.
Argun,
H. & Kargi, F. 2010b. Photo-fermentative hydrogen gas production from dark
fermentation effluent of ground wheat solution: Effects of light source and
light intensity. International Journal of Hydrogen Energy 35(4):
1595-1603.
Arimi,
M.M., Knodel, J., Kiprop, A., Namango, S.S., Zhang, Y. & Geißen, S.U. 2015.
Strategies for improvement of biohydrogen production from organic-rich
wastewater: A review. Biomass and Bioenergy 75: 101-118.
Arisht,
S.N., Abdul, P.M., Liu, C.M., Lin, S.K., Maaroff, R.M., Wu, S.Y. & Jahim,
J.M. 2019. Biotoxicity assessment and lignocellulosic structural changes of
phosphoric acid pre-treated young coconut husk hydrolysate for biohydrogen
production. International Journal of Hydrogen Energy 44(12): 5830-5843.
Assawamongkholsiri,
T. & Reungsang, A. 2015. Photo-fermentational hydrogen production of Rhodobacter sp. KKU-PS1 isolated from an
UASB reactor. Electronic Journal of Biotechnology 18(3): 221-230.
Assawamongkholsiri,
T., Reungsang, A., Plangkang, P. & Sittijunda, S. 2018. Repeated batch
fermentation for photo-hydrogen and lipid production from wastewater of a sugar
manufacturing plant. International Journal of Hydrogen Energy 43(7):
3605-3617.
Assawamongkholsiri,
T., Plangklang, P. & Reungsang, A. 2016. Photofermentaion and lipid
accumulation by Rhodobacter sp.
KKU-PS1 using malic acid as a substrate. International Journal of Hydrogen
Energy 41(15): 6259-6270.
Azizi,
M.A.H., Wan Isahak, W.N.R., Dzakaria, N. & Yarmo, M.A. 2019. Hydrogen
production from catalytic formic acid ecomposition over Zn based catalysts
under room temperature. Jurnal Kejuruteraan 31(1): 155-160.
Basak,
N. & Das, D. 2009. Photofermentative hydrogen production using purple
non-sulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular
photobioreactor: A case study. Biomass and Bioenergy 33(6): 911-919.
Basak,
N., Jana, A.K., Das, D. & Saikia, D. 2014. Photofermentative molecular
biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes:
The present progress and future perspective. International Journal of
Hydrogen Energy 39(13): 6853-6871.
Camuffo,
D. 2019. Radiometric aspects of solar radiation, blackbody, and lamp radiation.
Dlm. Microclimate for Cultural Heritage: Measurement, Risk Assessment,
Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments. 3rd ed. hlm. 237-272.
Chen,
C.Y., Saratale, G.D., Lee, C.M., Chen, P.C. & Chang, J.S. 2008. Phototrophic
hydrogen production in photobioreactors coupled with solar-energy-excited
optical fibers. International Journal of Hydrogen Energy 33(23):
6886-6895.
Chen,
X., Lv, Y., Liu, Y., Ren, R. & Zhao, J. 2017. The hydrogen production
characteristics of mixed photoheterotrophic culture. International Journal
of Hydrogen Energy 42(8): 4840-4847.
de
Souza, D.F., da Silva, P.P.F., Fontenele, L.F.A., Barbosa, G.D. & de
Oliveira Jesus, M. 2019. Efficiency, quality, and environmental impacts: A
comparative study of residential artificial lighting. Energy Reports 5:
409-424.
Eroğlu,
İ., Aslan, K., Gündüz, U., Yücel, M. & Türker, L. 1999. Substrate
consumption rates for hydrogen production by Rhodobacter sphaeroidesin a
column photobioreactor. Progress in Industrial Microbiology 35(C):
103-113.
Ghosh,
D., Sobro, I.F. & Hallenbeck, P.C. 2012. Optimization of the hydrogen yield
from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology. Bioresource Technology 123: 199-206.
Hallenbeck,
P.C. & Liu, Y. 2016. Recent advances in hydrogen production by
photosynthetic bacteria. International Journal of Hydrogen Energy 41(7):
4446-4454.
Han,
H., Jia, Q., Liu, B., Yang, H. & Shen, J. 2013. Fermentative hydrogen
production from acetate using Rhodobacter sphaeroides RV. International
Journal of Hydrogen Energy 38(25): 10773-10778.
Hanipa,
M.A.F., Abdul, P.M., Jahim, J.M., Takriff, M.S., Reungsang, A. & Wu, S.Y.
2020. Biotechnological approach to generate green biohydrogen through the
utilization of succinate-rich fermentation wastewater. International Journal
of Hydrogen Energy 45(42): 22246-22259.
Hay, J.X.W., Wu, T.Y.,
Juan, J.C. & Jahim, J.M. 2013. Biohydrogen production through photo
fermentation or dark fermentation using waste as a substrate: Overview,
economics, and future prospects of hydrogen usage. Biofuels, Bioproducts and
Biorefining 7(3): 334-352.
Hillmer,
P. & Gest, H. 1977. H2 metabolism in the photosynthetic
bacterium Rhodopseudomonas capsulata:
H2 production by growing cultures. Journal of Bacteriology 129(2): 724-731.
Hu,
C., Choy, S.Y. & Giannis, A. 2018. Evaluation of lighting systems, carbon
sources, and bacteria cultures on photofermentative hydrogen production. Applied
Biochemistry and Biotechnology 185(1): 257-269.
Hu,
J., Jing, Y., Zhang, Q., Guo, J. & Lee, D.J. 2017. Mesophilic and
thermophilic photo-hydrogen production from micro-grinded, enzyme-hydrolyzed
maize straws. International Journal of Hydrogen Energy 42(45):
27618-27622.
Jafary,
T., Wan Daud, W.R., Ghasemi, M., Abu Bakar, M.H., Sedighi, M., Kim, B.H.,
Carmona-Martínez, A.A., Jahim, J.M. & Ismail, M. 2019. Clean hydrogen
production in a full biological microbial electrolysis cell. International
Journal of Hydrogen Energy 44(58): 30524-30531.
Jalil,
N.K.A., Asli, U.A., Khamis, A.K., Hashim, H., Kamaruddin, J., Hassim, M.H.
& Choopavang, S.B. 2019. Kinetic analysis of biohydrogen formation using
immobilized hydrogen-producing bacteria on activated carbon sponge from
pineapple residues. Jurnal Kejuruteraan SI 2(1): 131-135.
Jiang,
D., Fang, Z., Chin, S.X., Tian, X.F. & Su, T.C. 2016. Biohydrogen
production from hydrolysates of selected tropical biomass wastes with Clostridium
butyricum. Scientific Reports 6(May): 1-11.
Jiang,
D., Ge, X., Zhang, T., Liu, H. & Zhang, Q. 2016. Photo-fermentative
hydrogen production from enzymatic hydrolysate of corn stalk pith with a
photosynthetic consortium. International Journal of Hydrogen Energy 41(38): 16778-16785.
Kapdan,
I.K., Kargi, F., Oztekin, R. & Argun, H. 2009. Bio-hydrogen production from
acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. International Journal of Hydrogen Energy 34(5): 2201-2207.
Koku,
H., Eroǧlu, I., Gündüz, U., Yücel, M., Türker, L., Eroğlu, İ.,
Gündüz, U., Yücel, M., & Türker, L. 2002. Aspects of the metabolism of
hydrogen production by Rhodobacter
sphaeroides. International Journal of Hydrogen Energy 27(11-12):
1315-1329.
Kumar,
G., Mudhoo, A., Sivagurunathan, P., Nagarajan, D., Ghimire, A., Lay, C.H., Lin,
C.Y., Lee, D.J. & Chang, J.S. 2016. Recent insights into the cell
immobilization technology applied for dark fermentative hydrogen production. Bioresource
Technology 219: 725-737.
Laocharoen,
S. & Reungsang, A. 2014. Isolation, characterization and optimization of
photo-hydrogen production conditions by newly isolated Rhodobacter sphaeroides KKU-PS5. International Journal of
Hydrogen Energy 39(21): 10870-10882.
Laurinavichene,
T., Tekucheva, D., Laurinavichius, K. & Tsygankov, A. 2018. Utilization of
distillery wastewater for hydrogen production in one-stage and two-stage
processes involving photofermentation. Enzyme and Microbial Technology 110: 1-7.
Li,
X., Wang, Y., Zhang, S., Chu, J., Zhang, M., Huang, M. & Zhuang, Y. 2011.
Effects of light/dark cycle, mixing pattern and partial pressure of H2 on biohydrogen production by Rhodobacter
sphaeroides ZX-5. Bioresource Technology 102(2): 1142-1148.
Liu,
B., Jin, Y.R., Cui, Q.F., Xie, G.J., Wu, Y.N. & Ren, N.Q. 2015.
Photo-fermentation hydrogen production by Rhodopseudomonas sp. nov. strain A7 isolated from the sludge in a bioreactor. International
Journal of Hydrogen Energy 40(28): 8661-8668.
Łukajtis,
R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A.
& Kamiński, M. 2018. Hydrogen production from biomass using dark
fermentation. Renewable and Sustainable Energy Reviews 91: 665-694.
Maaroff,
R.M., Jahim, J.M., Azahar, A.M., Abdul, P.M., Masdar, M.S., Nordin, D. &
Abd Nasir, M.A. 2019. Biohydrogen production from palm oil mill effluent (POME)
by two stage anaerobic sequencing batch reactor (ASBR) system for better
utilization of carbon sources in POME. International Journal of Hydrogen
Energy 44(6): 3395-3406.
Magnin,
J.P. & Deseure, J. 2019. Hydrogen generation in a pressurized
photobioreactor: Unexpected enhancement of biohydrogen production by the
phototrophic bacterium Rhodobacter capsulatus. Applied Energy 239(October 2018): 635-643.
Mahmod,
S.S., Jahim, J.M. & Abdul, P.M. 2017. Pretreatment conditions of palm oil
mill effluent (POME) for thermophilic biohydrogen production by mixed culture. International
Journal of Hydrogen Energy 42(45): 27512-27522.
Mishra,
P., Singh, L., Ab Wahid, Z., Krishnan, S., Rana, S., Amirul Islam, M. &
Sakinah, M. 2018. Photohydrogen production from dark-fermented palm oil mill
effluent (DPOME) and statistical optimization: Renewable substrate for
hydrogen. Journal of Cleaner Production 199: 11-17.
Nath,
K. & Das, D. 2009. Effect of light intensity and initial pH during hydrogen
production by an integrated dark and photofermentation process. International
Journal of Hydrogen Energy 34(17): 7497-7501.
Pandey,
A., Srivastava, S., Rai, P. & Duke, M. 2019. Cheese whey to biohydrogen and
useful organic acids: A non-pathogenic microbial treatment by L. acidophilus. Scientific Reports 9(1): 1-9.
Pandey,
A., Srivastava, N. & Sinha, P. 2012. Optimization of hydrogen production by Rhodobacter sphaeroides NMBL-01. Biomass
and Bioenergy 37: 251-256.
Reungsang,
A., Zhong, N., Yang, Y., Sittijunda, S., Xia, A. & Liao, Q. 2018. 7 -
Hydrogen from photo fermentation. Green Energy and Technology.
Singapore: Springer. hlm. 221-317.
Sivagurunathan,
P., Kumar, G., Bakonyi, P., Kim, S.H., Kobayashi, T., Xu, K.Q., Lakner, G.,
Tóth, G., Nemestóthy, N. & Bélafi-Bakó, K. 2016. A critical review on
issues and overcoming strategies for the enhancement of dark fermentative
hydrogen production in continuous systems. International Journal of Hydrogen
Energy 41(6): 3820-3836.
Subudhi,
S., Mogal, S.K., Kumar, N.R., Nayak, T., Lal, B., Velankar, H.R., Kumar,
T.R., Rao, P.V.C., Choudary, N.V., Shah,
G. & Gandham, S. 2016. Photo fermentative hydrogen production by a new
strain; Rhodobacter sphaeroides CNT
2A, isolated from pond sediment. International Journal of Hydrogen Energy 41(32): 13979-13985.
Sun,
M., Lv, Y. & Liu, Y. 2015. A new hydrogen-producing strain and its
characterization of hydrogen production. Applied Biochemistry and
Biotechnology 177(8): 1676-1689.
Tao,
Y., He, Y., Wu, Y., Liu, F., Li, X., Zong, W. & Zhou, Z. 2008.
Characteristics of a new photosynthetic bacterial strain for hydrogen
production and its application in wastewater treatment. International
Journal of Hydrogen Energy 33(3): 963-973.
Tarabas,
О.V., Hnatush, S.О. & Мoroz, О.М. 2019. The
usage of nitrogen compounds by purple non-sulfur bacteria of the Rhodopseudomonas genus. Regulatory
Mechanisms in Biosystems 10(1): 83-86.
Turon,
V., Anxionnaz-Minvielle, Z. & Willison, J.C. 2018. Replacing incandescent
lamps with an LED panel for hydrogen production by photofermentation: Visible
and NIR wavelength requirements. International Journal of Hydrogen Energy 43(16): 7784-7794.
Uyar,
B., Kars, G., Yücel, M., Gündüz, U. & Eroǧlu, I. 2012. Hydrogen
production via photofermentation. Dlm. State of the Art and Progress in
Production of Biohydrogen. Bentham Science. hlm. 54-77.
Uyar,
B., Eroglu, I., Yücel, M., Gündüz, U. & Türker, L. 2007. Effect of light
intensity, wavelength and illumination protocol on hydrogen production in
photobioreactors. International Journal of Hydrogen Energy 32(18):
4670-4677.
Wang,
Y., Tahir, N., Cao, W., Zhang, Q. & Lee, D.J. 2019. Grid columnar flat
panel photobioreactor with immobilized photosynthetic bacteria for continuous
photofermentative hydrogen production. Bioresource Technology 291:
121806.
Zhang,
Q. & Zhang, Z. 2018. Chapter Four - Biological hydrogen production from
renewable resources by photofermentation. Dlm. Advances in Bioenergy,
1st ed., Elsevier Inc. 3: 137-160.
Zhou,
Q., Zhang, P. & Zhang, G. 2015. Biomass and pigments production in
photosynthetic bacteria wastewater treatment: Effects of light sources. Bioresource
Technology 179: 505-509.
Zhu,
Z., Shi, J., Zhou, Z., Hu, F. & Bao, J. 2010. Photo-fermentation of Rhodobacter
sphaeroides for hydrogen production using lignocellulose-derived organic
acids. Process Biochemistry 45(12): 1894-1898.
*Corresponding author; email: peer@ukm.edu.my
|