Sains Malaysiana 51(11)(2022): 3677-3688
http://doi.org/10.17576/jsm-2022-5111-13
Effect
of Sterilization on the Degree of Esterification, FTIR Analysis, and
Antibacterial Activity of Durian-Rind Pectin
(Kesan Pensterilan terhadap Tahap Pengesteran, Analisis FTIR dan Aktiviti Antibakteria Pektin Kulit Durian)
INAS
SUCI RAHMAWATI1, HARSI DEWANTARI KUSUMANINGRUM2 &
NANCY DEWI YULIANA2
1Graduate
School Program of Food Science, IPB University, Bogor, Indonesia
2Department
of Food Science and Technology, Faculty of Agricultural Engineering and
Technology, IPB University, Bogor, Indonesia
Received: 8 December
2021/Accepted: 8 July 2022
Abstract
Pectin
is a common food ingredient used as a rheology modifier and recently recognized
as an emerging bioactive compound. Degree of esterification (DE) and molecular
weight (MW) are important determinants of its bioactivity. This study evaluated
the effect of moist heat sterilization (121 °C, 15 min) on pectin from
Indonesian durian rind as an alternative method to modify pectin. Sterilized
pectin was compared in terms of DE, Fourier transform infrared (FTIR) analysis,
gel-forming ability, and antibacterial activity to non-sterilized pectin and
standard citrus-peel pectin. Durian-rind pectin was identified as a low-methoxyl pectin with DE of 26.50% and weak antibacterial
activity. After sterilization, the DE and pH decreased. It lost the ability to form a gel which
indicated pectin was degraded to lower molecules. Loss of bands at 1760-1745 cm-1 indicated that pectin underwent ester hydrolysis and generated free carboxyl
groups. On the other hand, the sterilized durian-rind pectin showed strong
antibacterial activity towards Staphylococcus
aureus and Escherichia coli, with
a reduction of 5 log cycles and 3 log cycles, respectively (with the initial
bacterial level of 5 log cfu/mL). These results indicated that depolymerization
and deesterification of pectin by heat sterilization
was able to improve the antibacterial activity of durian-rind pectin.
Keywords: Antibacterial activity; durian rind; FTIR
analysis; pectin; sterilization
Abstrak
Pektin ialah bahan makanan biasa yang digunakan sebagai pengubah reologi dan baru-baru ini diiktiraf sebagai sebatian bioaktif yang baru. Tahap pengesteran (DE) dan berat molekul (MW) adalah penentu penting bioaktivitinya. Kajian ini menilai kesan pensterilan haba lembap (121 °C, 15 min) ke atas pektin daripada kulit durian Indonesia sebagai kaedah alternatif untuk mengubah suai pektin. Pektin tersteril dibandingkan daripada segi DE, analisis transformasi Fourier inframerah (FTIR), keupayaan membentuk gel dan aktiviti antibakteria kepada pektin tidak disterilkan dan pektin kulit sitrus piawai. Pektin kulit durian dikenal pasti sebagai pektin metoksil rendah dengan DE sebanyak 26.50% dan aktiviti antibakteria yang lemah. Selepas pensterilan, DE dan pH menurun. Ia kehilangan keupayaan untuk membentuk gel yang menunjukkan pektin telah terdegradasi kepada molekul yang lebih rendah. Kehilangan jalur pada 1760-1745 cm-1 menunjukkan bahawa pektin mengalami hidrolisis ester dan menghasilkan kumpulan karboksil bebas. Sebaliknya, pektin kulit durian yang disterilkan menunjukkan aktiviti antibakteria yang kuat terhadap Staphylococcus
aureus dan Escherichia coli masing-masing dengan pengurangan 5 kitaran log dan 3 kitaran log (dengan tahap bakteria awal 5 log cfu/mL).
Keputusan ini menunjukkan bahawa penyahpolimeran dan penyahsterilan pektin melalui pensterilan haba dapat meningkatkan aktiviti antibakteria pektin kulit durian.
Kata kunci: Aktiviti antibakteria; analisis FTIR; kulit durian; pektin; pensterilan
REFERENCES
AOAC 2012. Official Methods of Analysis. 19th ed.
Gaithersburg: AOAC International.
Ashayerizadeh, O., Dastar, B. & Pourashouri, P. 2020. Study of
antioxidant and antibacterial activities of depolymerized fucoidans extracted
from Sargassum tenerrimum. International Journal of Biological
Macromolecules 151(May): 1259-1266.
https://doi.org/10.1016/j.ijbiomac.2019.10.172
Bichara, L.C., Alvarez, P.E., Bimbi, M.V.F., Vaca, H., Gervasi, C. &
Brandán, S.A. 2016. Structural and spectroscopic study of a pectin isolated
from citrus peel by using FTIR and FT-Raman spectra and DFT calculations. Infrared
Physics & Technology 76(May): 315-327. https://doi.org/10.1016/j.infrared.2016.03.009
Chen, J., Liu, W., Liu, C-M., Li, T., Liang, R-H. & Luo, S-J. 2015.
Pectin modifications: A review. Critical Reviews in Food Science and
Nutrition 55(12): 1684-1698. https://doi.org/10.1080/10408398.2012.718722
Cheok, C.Y., Noranizan Mohd Adzahan, Russly Abdul Rahman, Nur Hanani
Zainal Abedin, Norhayati Hussain, Rabiha Sulaiman & Chong, G.H. 2018.
Current trends of tropical fruit waste utilization. Critical Reviews in Food
Science and Nutrition 58(3): 335-361. https://doi.org/10.1080/10408398.2016.1176009
Diaz, J.V., Anthon, G.E. & Barrett, D.M. 2007. Nonenzymatic
degradation of citrus pectin and pectate during prolonged heating: Effects of
pH, temperature, and degree of methyl esterification. Journal of
Agricultural and Food Chemistry 55(13): 5131-5136.
https://doi.org/10.1021/jf0701483
Feng, J., Yi, X., Huang, W., Wang, Y. & He, X. 2018. Novel
triterpenoids and glycosides from durian exert pronounced anti-inflammatory
activities. Food Chemistry 241: 215-221. https://doi.org/10.1016/j.foodchem.2017.08.097
Feng, J., Wang, Y., Yi, X., Yang, W. & He, X. 2016. Phenolics from
durian exert pronounced NO inhibitory and antioxidant activities. Journal of
Agricultural and Food Chemistry 64(21): 4273-4279. https://doi.org/10.1021/acs.jafc.6b01580
Fraeye, I., De Roeck, A., Duvetter, T., Verlent, I., Hendrickx, M. &
Van Loey, A. 2007. Influence of pectin properties and processing conditions on
thermal pectin degradation. Food Chemistry 105(2): 555-563.
https://doi.org/10.1016/j.foodchem.2007.04.009
Gnanasambandam, R. & Proctor, A. 2000. Determination of pectin degree
of esterification by diffuse reflectance Fourier transform infrared
spectroscopy. Food Chemistry 68(3): 327-332.
https://doi.org/10.1016/S0308-8146(99)00191-0
Harjanti, D.W., Wahyono, F. & Ciptaningtyas, V.R. 2020. Effects of
different sterilization methods of herbal formula on phytochemical compounds
and antibacterial activity against mastitis-causing bacteria. Veterinary
World 13(6): 1187-1192. https://doi.org/10.14202/vetworld.2020.1187-1192
Hokputsa, S., Gerddit, W., Pongsamart, S., Inngjerdingen, K., Heinze, T.,
Koschella, A., Harding, S.E. & Paulsen, B.S. 2004. Water-soluble
polysaccharides with pharmaceutical importance from durian rinds (Durio
zibethinus Murr.): Isolation, fractionation, characterisation and
bioactivity. Carbohydrate Polymers 56(4): 471-481.
https://doi.org/10.1016/j.carbpol.2004.03.018
Hu, X., Jiang, X., Gong, J., Hwang, H., Liu, Y. & Guan, H. 2005.
Antibacterial activity of lyase-depolymerized products of alginate. Journal
of Applied Phycology 17(1): 57-60.
https://doi.org/10.1007/s10811-005-5524-5
Köllnberger, A., Schrader, R. & Briehn, C.A. 2020. Carboxylic acid
mediated antimicrobial activity of silicone elastomers. Materials Science and
Engineering C 113(April): 111001.
https://doi.org/10.1016/j.msec.2020.111001
Li, P.J., Xia, J.L., Nie, Z.Y. & Shan, Y. 2016. Pectic
oligosaccharides hydrolyzed from orange peel by fungal multi-enzyme complexes
and their prebiotic and antibacterial potentials. LWT - Food Science and
Technology 69(June): 203-210. https://doi.org/10.1016/j.lwt.2016.01.042
Lipipun, V., Nantawanit, N. & Pongsamart, S. 2002. Antimicrobial
activity (in vitro) of polysaccharide gel from durian fruit-hulls. Songklanakarin
J. Sci. Technol. 24 (1): 31-38.
http://www.thaiscience.info/journals/Article/Antimicrobial activity (in vitro)
of polysaccharide gel from durian fruit-hulls.pdf
Liu, M., Liu, Y., Cao, M-J., Liu, G-M., Chen, Q., Sun, L. & Chen, H.
2017. Antibacterial activity and mechanisms of depolymerized fucoidans isolated
from Laminaria japonica. Carbohydrate Polymers 172: 294-305.
https://doi.org/10.1016/j.carbpol.2017.05.060
Minzanova, S., Mironov, V., Arkhipova, D., Khabibullina, A., Mironova, L.,
Zakirova, Y. & Milyukov, V. 2018. Biological activity and pharmacological
application of pectic polysaccharides: A review. Polymers 10(12): 1407.
https://doi.org/10.3390/polym10121407
Müller-Maatsch, J., Bencivenni, M., Caligiani, A., Tedeschi, T.,
Bruggeman, G., Bosch, M., Petrusan, J., Van Droogenbroeck, B., Elst, K. &
Sforza, S. 2016. Pectin content and composition from different food waste
streams. Food Chemistry 201(June): 37-45. https://doi.org/10.1016/j.foodchem.2016.01.012
Munarin, F., Bozzini, S., Visai, L., Tanzi, M.C. & Petrini, P. 2013.
Sterilization treatments on polysaccharides: Effects and side effects on
pectin. Food Hydrocolloids 31(1): 74-84. https://doi.org/10.1016/j.foodhyd.2012.09.017
Muñoz-Almagro, N., Montilla, A., Moreno, F.J. & Villamiel, M. 2017.
Modification of citrus and apple pectin by power ultrasound: Effects of acid
and enzymatic treatment. Ultrasonics Sonochemistry 38: 807-819.
https://doi.org/10.1016/j.ultsonch.2016.11.039
Pholdaeng, K. & Pongsamart, S. 2010. Studies on the immunomodulatory
effect of polysaccharide gel extracted from Durio zibethinus in Penaeus
monodon shrimp against Vibrio harveyi and WSSV. Fish and
Shellfish Immunology 28(4): 555-561. https://doi.org/10.1016/j.fsi.2009.12.009
Pongsamart, S., Nanatawanit, N., Lertchaipon, J. & Lipipun, V. 2005.
Novel water soluble antibacterial dressing of durian polysaccharide gel. Acta
Horticulturae 678: 65-73. https://doi.org/10.17660/ActaHortic.2005.678.8
Saravana, P.S., Cho, Y-N., Patil, M.P., Cho, Y.J., Kim, G.D., Park, Y.B.,
Woo, H-C. & Chun, B-S. 2018. Hydrothermal degradation of seaweed
polysaccharide: Characterization and biological activities. Food Chemistry 268: 179-187. https://doi.org/10.1016/j.foodchem.2018.06.077
Schieber, A., Hilt, P., Streker, P., Endreß, H-U., Rentschler, C. &
Carle, R. 2003. A new process for the combined recovery of pectin and phenolic
compounds from apple pomace. Innovative Food Science & Emerging
Technologies 4(1): 99-107. https://doi.org/10.1016/S1466-8564(02)00087-5
Shpigelman, A., Kyomugasho, C., Christiaens, S., Van Loey, A.M. &
Hendrickx, M.E. 2014. Thermal and high pressure high temperature processes
result in distinctly different pectin non-enzymatic conversions. Food
Hydrocolloids 39: 251-263. https://doi.org/10.1016/j.foodhyd.2014.01.018
Smyth, T., Ramachandran, V.N. & Smyth, W.F. 2009. A study of the
antimicrobial activity of selected naturally occurring and synthetic coumarins. International Journal of Antimicrobial Agents 33(5): 421-426.
https://doi.org/10.1016/j.ijantimicag.2008.10.022
Spangler, D., Rothenburger, S., Nguyen, K., Jampani, H., Weiss, S. &
Bhende, S. 2003. In vitro antimicrobial activity of oxidized regenerated
cellulose against antibiotic-resistant microorganisms. Surgical Infections 4(3): 255-262. https://doi.org/10.1089/109629603322419599
Stalheim, T., Ballance, S., Christensen, B.E. & Granum, P.E. 2009.
Sphagnan - a pectin-like polymer isolated from Sphagnum moss can inhibit
the growth of some typical food spoilage and food poisoning bacteria by
lowering the pH. Journal of Applied Microbiology 106(3): 967-976.
https://doi.org/10.1111/j.1365-2672.2008.04057.x
Szymanska-Chargot, M. & Zdunek, A. 2013. Use of FT-IR spectra and pca
to the bulk characterization of cell wall residues of fruits and vegetables
along a fraction process. Food Biophysics 8(1): 29-42.
https://doi.org/10.1007/s11483-012-9279-7
Takamine, K., Abe, J-I., Shimono, K., Sameshima, Y., Morimura, S. &
Kida, K. 2007. Physicochemical and gelling characterizations of pectin
extracted from sweet potato pulp. Journal of Applied Glycoscience 54(4):
211-216. https://doi.org/10.5458/jag.54.211
Thunyakipisal, P., Saladyanant, T., Hongprasong, N., Pongsamart, S. &
Apinhasmit, W. 2010. Antibacterial activity of polysaccharide gel extract from
fruit rinds of Durio zibethinus Murr. against oral pathogenic bacteria. Journal
of Investigative and Clinical Dentistry 1(2): 120-125.
https://doi.org/10.1111/j.2041-1626.2010.00017.x
Tonari, K., Mitsui, K. & Yonemoto, K. 2002. Structure and
antibacterial activity of cinnamic acid related compounds. Journal of Oleo
Science 51(4): 271-273. https://doi.org/10.5650/jos.51.271
Vodnar, D.C., Călinoiu, L.F., Dulf, F.V., Ştefănescu, B.E.,
Crişan, G. & Socaciu, C. 2017. Identification of the bioactive
compounds and antioxidant, antimutagenic and antimicrobial activities of
thermally processed agro-industrial waste. Food Chemistry 231: 131-140.
https://doi.org/10.1016/j.foodchem.2017.03.131
Voragen, A.G.J., Coenen, G.J., Verhoef, R.P. & Schols, H.A. 2009.
Pectin, a versatile polysaccharide present in plant cell walls. Structural
Chemistry 20(2): 263-275. https://doi.org/10.1007/s11224-009-9442-z
Wai, W.W., Alkarkhi, A.F.M. & Mat Easa, A. 2010. Effect of extraction
conditions on yield and degree of esterification of durian rind pectin: An
experimental design. Food and Bioproducts Processing 88(2-3): 209-214.
https://doi.org/10.1016/j.fbp.2010.01.010
Wang, X., Chen, Q. & Lü, X. 2014. Pectin extracted from apple pomace
and citrus peel by subcritical water. Food Hydrocolloids 38: 129-137.
https://doi.org/10.1016/j.foodhyd.2013.12.003
Wanlapa, S., Wachirasiri, K., Sithisam-Ang, D. & Suwannatup, T. 2015.
Potential of Selected tropical fruit peels as dietary fiber in functional
foods. International Journal of Food Properties 18(6): 1306-1316.
https://doi.org/10.1080/10942912.2010.535187
Wikiera, A., Grabacka, M., Byczyński, Ł., Stodolak, B. &
Mika, M. 2021. Enzymatically extracted apple pectin possesses antioxidant and
antitumor activity. Molecules 26(5).
https://doi.org/10.3390/molecules26051434
Wu, M-C., Li, H-C., Wu, P-H., Huang, P-H. & Wang, Y-T. 2014.
Assessment of oligogalacturonide from citrus pectin as a potential
antibacterial agent against foodborne pathogens. Journal of Food Science 79(8): M1541-M1544. https://doi.org/10.1111/1750-3841.12526
Zhu, M., Ge, L., Lyu, Y., Zi, Y., Li, X., Li, D. & Mu, C. 2017.
Preparation, characterization and antibacterial activity of oxidized
κ-carrageenan. Carbohydrate Polymers 174: 1051-1058.
https://doi.org/10.1016/j.carbpol.2017.07.029
Zi, Y., Zhu, M., Li, X., Xu, Y., Wei, H., Li, D. & Mu, C. 2018.
Effects of carboxyl and aldehyde groups on the antibacterial activity of
oxidized amylose. Carbohydrate Polymers 192: 118-125.
https://doi.org/10.1016/j.carbpol.2018.03.060
*Corresponding author;
email: h_kusumaningrum@apps.ipb.ac.id
|