Sains Malaysiana 51(11)(2022): 3677-3688

http://doi.org/10.17576/jsm-2022-5111-13

 

Effect of Sterilization on the Degree of Esterification, FTIR Analysis, and Antibacterial Activity of Durian-Rind Pectin

(Kesan Pensterilan terhadap Tahap Pengesteran, Analisis FTIR dan Aktiviti Antibakteria Pektin Kulit Durian)

 

INAS SUCI RAHMAWATI1, HARSI DEWANTARI KUSUMANINGRUM2 & NANCY DEWI YULIANA2

 

1Graduate School Program of Food Science, IPB University, Bogor, Indonesia

2Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia

 

Received: 8 December 2021/Accepted: 8 July 2022

 

Abstract

Pectin is a common food ingredient used as a rheology modifier and recently recognized as an emerging bioactive compound. Degree of esterification (DE) and molecular weight (MW) are important determinants of its bioactivity. This study evaluated the effect of moist heat sterilization (121 °C, 15 min) on pectin from Indonesian durian rind as an alternative method to modify pectin. Sterilized pectin was compared in terms of DE, Fourier transform infrared (FTIR) analysis, gel-forming ability, and antibacterial activity to non-sterilized pectin and standard citrus-peel pectin. Durian-rind pectin was identified as a low-methoxyl pectin with DE of 26.50% and weak antibacterial activity. After sterilization, the DE and pH decreased.  It lost the ability to form a gel which indicated pectin was degraded to lower molecules. Loss of bands at 1760-1745 cm-1 indicated that pectin underwent ester hydrolysis and generated free carboxyl groups. On the other hand, the sterilized durian-rind pectin showed strong antibacterial activity towards Staphylococcus aureus and Escherichia coli, with a reduction of 5 log cycles and 3 log cycles, respectively (with the initial bacterial level of 5 log cfu/mL).  These results indicated that depolymerization and deesterification of pectin by heat sterilization was able to improve the antibacterial activity of durian-rind pectin.

 

Keywords: Antibacterial activity; durian rind; FTIR analysis; pectin; sterilization

 

Abstrak

Pektin ialah bahan makanan biasa yang digunakan sebagai pengubah reologi dan baru-baru ini diiktiraf sebagai sebatian bioaktif yang baru. Tahap pengesteran (DE) dan berat molekul (MW) adalah penentu penting bioaktivitinya. Kajian ini menilai kesan pensterilan haba lembap (121 °C, 15 min) ke atas pektin daripada kulit durian Indonesia sebagai kaedah alternatif untuk mengubah suai pektin. Pektin tersteril dibandingkan daripada segi DE, analisis transformasi Fourier inframerah (FTIR), keupayaan membentuk gel dan aktiviti antibakteria kepada pektin tidak disterilkan dan pektin kulit sitrus piawai. Pektin kulit durian dikenal pasti sebagai pektin metoksil rendah dengan DE sebanyak 26.50% dan aktiviti antibakteria yang lemah. Selepas pensterilan, DE dan pH menurun. Ia kehilangan keupayaan untuk membentuk gel yang menunjukkan pektin telah terdegradasi kepada molekul yang lebih rendah. Kehilangan jalur pada 1760-1745 cm-1 menunjukkan bahawa pektin mengalami hidrolisis ester dan menghasilkan kumpulan karboksil bebas. Sebaliknya, pektin kulit durian yang disterilkan menunjukkan aktiviti antibakteria yang kuat terhadap Staphylococcus aureus dan Escherichia coli masing-masing dengan pengurangan 5 kitaran log dan 3 kitaran log (dengan tahap bakteria awal 5 log cfu/mL). Keputusan ini menunjukkan bahawa penyahpolimeran dan penyahsterilan pektin melalui pensterilan haba dapat meningkatkan aktiviti antibakteria pektin kulit durian.

 

Kata kunci: Aktiviti antibakteria; analisis FTIR; kulit durian; pektin; pensterilan

 

REFERENCES

AOAC 2012. Official Methods of Analysis. 19th ed. Gaithersburg: AOAC International.

Ashayerizadeh, O., Dastar, B. & Pourashouri, P. 2020. Study of antioxidant and antibacterial activities of depolymerized fucoidans extracted from Sargassum tenerrimum. International Journal of Biological Macromolecules 151(May): 1259-1266. https://doi.org/10.1016/j.ijbiomac.2019.10.172

Bichara, L.C., Alvarez, P.E., Bimbi, M.V.F., Vaca, H., Gervasi, C. & Brandán, S.A. 2016. Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-Raman spectra and DFT calculations. Infrared Physics & Technology 76(May): 315-327. https://doi.org/10.1016/j.infrared.2016.03.009

Chen, J., Liu, W., Liu, C-M., Li, T., Liang, R-H. & Luo, S-J. 2015. Pectin modifications: A review. Critical Reviews in Food Science and Nutrition 55(12): 1684-1698. https://doi.org/10.1080/10408398.2012.718722

Cheok, C.Y., Noranizan Mohd Adzahan, Russly Abdul Rahman, Nur Hanani Zainal Abedin, Norhayati Hussain, Rabiha Sulaiman & Chong, G.H. 2018. Current trends of tropical fruit waste utilization. Critical Reviews in Food Science and Nutrition 58(3): 335-361. https://doi.org/10.1080/10408398.2016.1176009

Diaz, J.V., Anthon, G.E. & Barrett, D.M. 2007. Nonenzymatic degradation of citrus pectin and pectate during prolonged heating: Effects of pH, temperature, and degree of methyl esterification. Journal of Agricultural and Food Chemistry 55(13): 5131-5136. https://doi.org/10.1021/jf0701483

Feng, J., Yi, X., Huang, W., Wang, Y. & He, X. 2018. Novel triterpenoids and glycosides from durian exert pronounced anti-inflammatory activities. Food Chemistry 241: 215-221. https://doi.org/10.1016/j.foodchem.2017.08.097

Feng, J., Wang, Y., Yi, X., Yang, W. & He, X. 2016. Phenolics from durian exert pronounced NO inhibitory and antioxidant activities. Journal of Agricultural and Food Chemistry 64(21): 4273-4279. https://doi.org/10.1021/acs.jafc.6b01580

Fraeye, I., De Roeck, A., Duvetter, T., Verlent, I., Hendrickx, M. & Van Loey, A. 2007. Influence of pectin properties and processing conditions on thermal pectin degradation. Food Chemistry 105(2): 555-563. https://doi.org/10.1016/j.foodchem.2007.04.009

Gnanasambandam, R. & Proctor, A. 2000. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry 68(3): 327-332. https://doi.org/10.1016/S0308-8146(99)00191-0

Harjanti, D.W., Wahyono, F. & Ciptaningtyas, V.R. 2020. Effects of different sterilization methods of herbal formula on phytochemical compounds and antibacterial activity against mastitis-causing bacteria. Veterinary World 13(6): 1187-1192. https://doi.org/10.14202/vetworld.2020.1187-1192

Hokputsa, S., Gerddit, W., Pongsamart, S., Inngjerdingen, K., Heinze, T., Koschella, A., Harding, S.E. & Paulsen, B.S. 2004. Water-soluble polysaccharides with pharmaceutical importance from durian rinds (Durio zibethinus Murr.): Isolation, fractionation, characterisation and bioactivity. Carbohydrate Polymers 56(4): 471-481. https://doi.org/10.1016/j.carbpol.2004.03.018

Hu, X., Jiang, X., Gong, J., Hwang, H., Liu, Y. & Guan, H. 2005. Antibacterial activity of lyase-depolymerized products of alginate. Journal of Applied Phycology 17(1): 57-60. https://doi.org/10.1007/s10811-005-5524-5

Köllnberger, A., Schrader, R. & Briehn, C.A. 2020. Carboxylic acid mediated antimicrobial activity of silicone elastomers. Materials Science and Engineering C 113(April): 111001. https://doi.org/10.1016/j.msec.2020.111001

Li, P.J., Xia, J.L., Nie, Z.Y. & Shan, Y. 2016. Pectic oligosaccharides hydrolyzed from orange peel by fungal multi-enzyme complexes and their prebiotic and antibacterial potentials. LWT - Food Science and Technology 69(June): 203-210. https://doi.org/10.1016/j.lwt.2016.01.042

Lipipun, V., Nantawanit, N. & Pongsamart, S. 2002. Antimicrobial activity (in vitro) of polysaccharide gel from durian fruit-hulls. Songklanakarin J. Sci. Technol. 24 (1): 31-38. http://www.thaiscience.info/journals/Article/Antimicrobial activity (in vitro) of polysaccharide gel from durian fruit-hulls.pdf

Liu, M., Liu, Y., Cao, M-J., Liu, G-M., Chen, Q., Sun, L. & Chen, H. 2017. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydrate Polymers 172: 294-305. https://doi.org/10.1016/j.carbpol.2017.05.060

Minzanova, S., Mironov, V., Arkhipova, D., Khabibullina, A., Mironova, L., Zakirova, Y. & Milyukov, V. 2018. Biological activity and pharmacological application of pectic polysaccharides: A review. Polymers 10(12): 1407. https://doi.org/10.3390/polym10121407

Müller-Maatsch, J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M., Petrusan, J., Van Droogenbroeck, B., Elst, K. & Sforza, S. 2016. Pectin content and composition from different food waste streams. Food Chemistry 201(June): 37-45. https://doi.org/10.1016/j.foodchem.2016.01.012

Munarin, F., Bozzini, S., Visai, L., Tanzi, M.C. & Petrini, P. 2013. Sterilization treatments on polysaccharides: Effects and side effects on pectin. Food Hydrocolloids 31(1): 74-84. https://doi.org/10.1016/j.foodhyd.2012.09.017

Muñoz-Almagro, N., Montilla, A., Moreno, F.J. & Villamiel, M. 2017. Modification of citrus and apple pectin by power ultrasound: Effects of acid and enzymatic treatment. Ultrasonics Sonochemistry 38: 807-819. https://doi.org/10.1016/j.ultsonch.2016.11.039

Pholdaeng, K. & Pongsamart, S. 2010. Studies on the immunomodulatory effect of polysaccharide gel extracted from Durio zibethinus in Penaeus monodon shrimp against Vibrio harveyi and WSSV. Fish and Shellfish Immunology 28(4): 555-561. https://doi.org/10.1016/j.fsi.2009.12.009

Pongsamart, S., Nanatawanit, N., Lertchaipon, J. & Lipipun, V. 2005. Novel water soluble antibacterial dressing of durian polysaccharide gel. Acta Horticulturae 678: 65-73. https://doi.org/10.17660/ActaHortic.2005.678.8

Saravana, P.S., Cho, Y-N., Patil, M.P., Cho, Y.J., Kim, G.D., Park, Y.B., Woo, H-C. & Chun, B-S. 2018. Hydrothermal degradation of seaweed polysaccharide: Characterization and biological activities. Food Chemistry 268: 179-187. https://doi.org/10.1016/j.foodchem.2018.06.077

Schieber, A., Hilt, P., Streker, P., Endreß, H-U., Rentschler, C. & Carle, R. 2003. A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innovative Food Science & Emerging Technologies 4(1): 99-107. https://doi.org/10.1016/S1466-8564(02)00087-5

Shpigelman, A., Kyomugasho, C., Christiaens, S., Van Loey, A.M. & Hendrickx, M.E. 2014. Thermal and high pressure high temperature processes result in distinctly different pectin non-enzymatic conversions. Food Hydrocolloids 39: 251-263. https://doi.org/10.1016/j.foodhyd.2014.01.018

Smyth, T., Ramachandran, V.N. & Smyth, W.F. 2009. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. International Journal of Antimicrobial Agents 33(5): 421-426. https://doi.org/10.1016/j.ijantimicag.2008.10.022

Spangler, D., Rothenburger, S., Nguyen, K., Jampani, H., Weiss, S. & Bhende, S. 2003. In vitro antimicrobial activity of oxidized regenerated cellulose against antibiotic-resistant microorganisms. Surgical Infections 4(3): 255-262. https://doi.org/10.1089/109629603322419599

Stalheim, T., Ballance, S., Christensen, B.E. & Granum, P.E. 2009. Sphagnan - a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH. Journal of Applied Microbiology 106(3): 967-976. https://doi.org/10.1111/j.1365-2672.2008.04057.x

Szymanska-Chargot, M. & Zdunek, A. 2013. Use of FT-IR spectra and pca to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophysics 8(1): 29-42. https://doi.org/10.1007/s11483-012-9279-7

Takamine, K., Abe, J-I., Shimono, K., Sameshima, Y., Morimura, S. & Kida, K. 2007. Physicochemical and gelling characterizations of pectin extracted from sweet potato pulp. Journal of Applied Glycoscience 54(4): 211-216. https://doi.org/10.5458/jag.54.211

Thunyakipisal, P., Saladyanant, T., Hongprasong, N., Pongsamart, S. & Apinhasmit, W. 2010. Antibacterial activity of polysaccharide gel extract from fruit rinds of Durio zibethinus Murr. against oral pathogenic bacteria. Journal of Investigative and Clinical Dentistry 1(2): 120-125. https://doi.org/10.1111/j.2041-1626.2010.00017.x

Tonari, K., Mitsui, K. & Yonemoto, K. 2002. Structure and antibacterial activity of cinnamic acid related compounds. Journal of Oleo Science 51(4): 271-273. https://doi.org/10.5650/jos.51.271

Vodnar, D.C., Călinoiu, L.F., Dulf, F.V., Ştefănescu, B.E., Crişan, G. & Socaciu, C. 2017. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry 231: 131-140. https://doi.org/10.1016/j.foodchem.2017.03.131

Voragen, A.G.J., Coenen, G.J., Verhoef, R.P. & Schols, H.A. 2009. Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry 20(2): 263-275. https://doi.org/10.1007/s11224-009-9442-z

Wai, W.W., Alkarkhi, A.F.M. & Mat Easa, A. 2010. Effect of extraction conditions on yield and degree of esterification of durian rind pectin: An experimental design. Food and Bioproducts Processing 88(2-3): 209-214. https://doi.org/10.1016/j.fbp.2010.01.010

Wang, X., Chen, Q. & Lü, X. 2014. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloids 38: 129-137. https://doi.org/10.1016/j.foodhyd.2013.12.003

Wanlapa, S., Wachirasiri, K., Sithisam-Ang, D. & Suwannatup, T. 2015. Potential of Selected tropical fruit peels as dietary fiber in functional foods. International Journal of Food Properties 18(6): 1306-1316. https://doi.org/10.1080/10942912.2010.535187

Wikiera, A., Grabacka, M., Byczyński, Ł., Stodolak, B. & Mika, M. 2021. Enzymatically extracted apple pectin possesses antioxidant and antitumor activity. Molecules 26(5). https://doi.org/10.3390/molecules26051434

Wu, M-C., Li, H-C., Wu, P-H., Huang, P-H. & Wang, Y-T. 2014. Assessment of oligogalacturonide from citrus pectin as a potential antibacterial agent against foodborne pathogens. Journal of Food Science 79(8): M1541-M1544. https://doi.org/10.1111/1750-3841.12526

Zhu, M., Ge, L., Lyu, Y., Zi, Y., Li, X., Li, D. & Mu, C. 2017. Preparation, characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydrate Polymers 174: 1051-1058. https://doi.org/10.1016/j.carbpol.2017.07.029

Zi, Y., Zhu, M., Li, X., Xu, Y., Wei, H., Li, D. & Mu, C. 2018. Effects of carboxyl and aldehyde groups on the antibacterial activity of oxidized amylose. Carbohydrate Polymers 192: 118-125. https://doi.org/10.1016/j.carbpol.2018.03.060

 

*Corresponding author; email: h_kusumaningrum@apps.ipb.ac.id

 

 

previous