Sains Malaysiana 51(11)(2022): 3775-3784
http://doi.org/10.17576/jsm-2022-5111-21
Kesan Rawatan Termomekanik dengan Mampatan Tunggal terhadap Mikrostruktur dan Sifat Mikromekanik Aloi Pateri Sn-0.7Cu
(Effect of Thermomechanical Treatment with Single Compression
on Microstructural and Micromechanical Properties of Sn-0.7Cu Solder Alloy)
FATEH
AMERA MOHD YUSOFF1, MARIA ABU BAKAR1,* & AZMAN JALAR1,2
1Institut Kejuruteraan Mikro dan Nanoelektronik (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 14 March 2022/ Accepted: 6 July 2022
Abstrak
Aloi pateri bebas plumbum telah digunakan secara meluas sebagai bahan antarasambungan bagi peranti elektronik yang memberikan sambungan elektrik bagi kebolehfungsian dan sokongan mekanik bagi integriti struktur. Rawatan termomekanik merupakan proses metalurgi yang melibatkan gabungan rawatan terma dan pembebanan mekanik. Kajian ini bertujuan untuk mengkaji kesan rawatan termomekanik dengan mampatan tunggal ke atas perubahan mikrostruktur dan sifat mikromekanik aloi pateri Sn-0.7Cu. Aloi pateri Sn-0.7Cu berbentuk bar dipotong kepada lapan sampel berbentuk kiub dengan ukuran 6 mm (p) × 6 mm (l) × 10 mm (t). Empat sampel yang pertama menjalani rawatan haba pada suhu 30 ℃, 60
℃, 90 ℃ dan 120 ℃ selama 20 minit, diikuti dengan proses mampatan tunggal sebanyak 20% dan pelindapan di dalam medium air. Empat sampel yang berikutnya hanya didedahkan pada rawatan haba sahaja, diikuti pelindapan di dalam medium
air digunakan sebagai sampel kawalan. Cerapan mikrostruktur menunjukkan butiran yang kecil dan seragam aloi pateri Sn-0.7Cu terbentuk dengan rawatan termomekanik mampatan tunggal pada suhu 120 °C akibat daripada penghabluran semula butiran. Keputusan kekerasan bagi aloi pateri Sn-0.7Cu selepas rawatan termomekanik mampatan tunggal pada suhu 120 °C telah menunjukkan perubahan yang sedikit iaitu sebanyak 19% berbanding sampel rawatan haba sebanyak 64%. Keputusan modulus terkurang juga menunjukkan tren yang sama iaitu perubahan yang lebih rendah bagi sampel dengan rawatan termomekanik mampatan tunggal pada suhu 120 °C sebanyak 52% manakala sampel rawatan haba sebanyak 69%. Penemuan kajian ini menunjukkan bahawa kesan suhu dalam rawatan termomekanik mampatan tunggal berupaya untuk mengubah suai mikrostruktur dan memberikan kestabilan sifat mikromekanik aloi pateri Sn-0.7Cu berbanding dengan rawatan haba.
Kata kunci: Kekerasan; modulus terkurang; penghabluran semula butiran; rawatan termomekanik mampatan tunggal; Sn-0.7Cu; ujian pelekukan nano
Abstract
Lead-free
solder alloys have been widely used as interconnection materials for electronic
devices that provide electrical connections for functionality and mechanical
support for structural integrity. Thermomechanical treatment is a metallurgical
process that involves a combination of thermal treatment and mechanical
loading. This study aimed to investigate the effect of thermomechanical
treatment with single compression on the microstructural changes and
micromechanical properties of the Sn-0.7Cu solder alloy. A bar-shaped Sn-0.7Cu
solder alloy was cut up into eight samples cube-shaped with dimensions of 6 mm
(l) × 6 mm (w) × 10 mm (h). The first four samples were subjected to heat
treatment for 20 min at 30 °C, 60 °C, 90 °C, and 120 °C, followed by single compression
of 20% and water medium. The next four samples were subjected to heat treatment
only, followed by quenching in a water medium used as control samples.
Microstructural observation shows that small and uniform grains of Sn-0.7Cu
solder alloy was formed from thermomechanical treatment with single compression
at 120 °C due to grain recrystallization. The hardness result for Sn-0.7Cu
solder alloy after thermomechanical treatment with single compression at 120 °C
has shown tiny changes of 19% as compared to heat-treated samples with 64%.
Reduced modulus results also showed the same trend whereby the lesser changes
for the thermomechanical treatment sample were about 52% while the heat-treated
sample was about 69%. The findings of this study indicate that the temperature
in thermomechanical treatment with single compression has been able to alter
the microstructure and give stability to the micromechanical properties of
Sn-0.7Cu as opposed to heat treatment.
Keywords:
Grain recrystallization; hardness; nanoindentation test; reduced modulus;
single compression thermomechanical treatment; Sn-0.7Cu
REFERENCES
Aamir, M., Muhammad, R., Tolouei-Rad, M., Giasin, K.
& Silberschmidt, V.V. 2019. A review: Microstructure and properties of
tin-silver-copper lead-free solder series for the applications of electronics. Soldering
& Surface Mount Technology 32(2): 115-126.
Abdullah, I., Zulkifli, M.N., Jalar,
A. & Ismail, R. 2018. Deformation behavior relationship between tensile and
nanoindentation tests of SAC305 lead-free solder wire. Soldering and Surface
Mount Technology 30(3): 194-202.
Bakar, M.A., Jalar, A., Wan Yusoff,
W.Y., Safee, N.S., Ismail, A., Ismail, N., Salleh, E.M. & Ibrahim, N.S.
2019. Effect of shock wave on micromechanical properties of SAC 0307/ENiG
solder joint using nanoindentation approach. Sains Malaysiana 48(6):
1273-1279.
Baghdadi, A.H., Rajabi, A., Selamat,
N.F.M., Sajuri, Z. & Omar, M.Z. 2019. Effect of post-weld heat treatment on
the mechanical behavior and dislocation density of friction stir welded Al6061. Materials Science and Engineering: A 754: 728-734.
Barkov, R.Y., Mikhaylovskaya, A.V.,
Yakovtseva, O.A., Loginova, I.S., Prosviryakov, A.S. & Pozdniakov, A.V.
2021. Effects of thermomechanical treatment on the microstructure,
precipitation strengthening, internal friction, and thermal stability of
Al–Er-Yb-Sc alloys with good electrical conductivity. Journal of Alloys and
Compounds 855: 157367.
Depiver, J.A., Mallik, S. &
Harmanto, D. 2021. Solder joint failures under thermo-mechanical loading
conditions - A review. Advances in Materials and Processing Technologies 7(1): 1-26.
Fazal, M.A., Liyana, N.K., Rubaiee,
S. & Anas, A. 2019. A critical review on performance, microstructure and
corrosion resistance of Pb-free solders. Measurement: Journal of the
International Measurement Confederation 134: 897-907.
He, H., Yi, Y., Huang, S., Guo, W.
& Zhang, Y. 2020. Effects of thermomechanical treatment on grain
refinement, second-phase particle dissolution, and mechanical properties of
2219 Al alloy. Journal of Materials Processing Technology 278: 116506.
Hu, X., Chai, L., Shen, J., Wu, H.,
Li, Y., Cheng, J., Luo, J. & Yao, L. 2022. Microstructure, texture, and
hardness evolution of cold-rolled high-purity Ti sheet during annealing at 350
°C to 550 °C. Metallurgical and Materials Transactions A: Physical
Metallurgy and Materials Science 53(6): 2086-2098.
Huang, C.M., Raj, A., Osterman, M.
& Pecht, M. 2020. Assembly options and challenges for electronic products
with lead-free exemption. IEEE Access 8: 134194-134208.
Ismail, N., Jalar, A., Abu Bakar, M.,
Ismail, R., Safee, N.S., Ismail, A.G. & Ibrahim, N.S. 2019. Effect of
isothermal aging on microhardness properties of Sn-Ag-Cu/CNT/Cu using
nanoindentation. Sains Malaysiana 48(6): 1267-1272.
Ismail, N., Jalar, A., Bakar, M.A.
& Ismail, R. 2018. Effect of carbon nanotube addition on the growth of
intermetallic layer of Sn-Ag-Cu solder system under thermal aging. Sains
Malaysiana 47(7): 1585-1590.
Jalar, A., Bakar, M.A. & Ismail,
R. 2020. Temperature dependence of elastic–plastic properties of fine-pitch SAC
0307 solder joint using nanoindentation approach. Metallurgical and
Materials Transactions A 51(3): 1221-1228.
Jeong, M.S., Lee, D.H. & Yoon,
J.W. 2022. Effect of temperature on shear properties of Sn-3.0Ag-0.5Cu and
Sn-58Bi solder joints. Journal of Alloys and Compounds 903: 163987.
Joo, H.S., Hwang, S.K. & Im, Y.T.
2018. Effect of thermomechanical treatment on mechanical and electrical
properties of Cu-Cr-Zr alloy in continuous hybrid process. Procedia
Manufacturing 15: 1525-1532.
Kudryashova, A., Sheremetyev, V., Lukashevich,
K., Cheverikin, V., Inaekyan, K., Galkin, S., Prokoshkin, S. & Brailovski,
V. 2020. Effect of a combined thermomechanical treatment on the microstructure,
texture and superelastic properties of Ti-18Zr-14Nb alloy for orthopedic
implants. Journal of Alloys and Compounds 843: 156066.
Le, W.K., Ning, X., Ke, C.B., Zhou,
M.B. & Zhang, X.P. 2019. Current density dependent shear performance and
fracture behavior of micro-scale BGA structure Cu/Sn–3.0Ag–0.5Cu/Cu joints
under coupled electromechanical loads. Journal of Materials Science:
Materials in Electronics 30(16): 15184-15197.
Lee, A., Zee, B. & Foo, F.J.
2021. Application of EBSD study of Cu-Sn IMCs in SAC305 and Sn0.7Cu solder
joints to determine the suitability of Sn0.7Cu solder as alternative in
mitigating ILD cracks/delamination. 2021 IEEE 23rd Electronics Packaging
Technology Conference (EPTC). pp. 435-439.
Liu, G. & Ji, S. 2019.
Microstructure, dynamic restoration and recrystallization texture of Sn-Cu
after rolling at room temperature. Materials Characterization 150(December 2018): 174-183.
Lodo, K., Dalgleish, C., Patel, M.
& Veitch, M. 2018. A novel public health threat - high lead solder in
stainless steel rainwater tanks in Tasmania. Australian and New Zealand
Journal of Public Health 42(1): 77-82.
Mondol, S., Kumar, S. &
Chattopadhyay, K. 2019. Effect of thermo-mechanical treatment on microstructure
and tensile properties of 2219ScMg alloy. Materials Science and Engineering:
A 759: 583-593.
Morando, C. & Fornaro, O. 2021.
Influence of aging on microstructure and hardness of lead-free solder alloys. Soldering
and Surface Mount Technology 33(1): 57-64.
Nabihah, A. & Nurulakmal, M.
2019. Effect of In addition on microstructure, wettability and strength of SnCu
solder. Materials Today: Proceedings 17: 803-809.
Qin, H.B., Zhang, X.P., Zhou, M.B.,
Li, X.P. & Mai, Y.W. 2015. Geometry effect on mechanical performance and
fracture behavior of micro-scale ball grid array structure Cu/Sn-3.0Ag-0.5Cu/Cu
solder joints. Microelectronics Reliability 55(8): 1214-1225.
Raj, R., Shrivastava, P., Jindal, N.,
Alam, S.N., Naithani, N., Padhy, M., Phani, A.S.D., Ramana, T.V.V. & Abbas,
M.M. 2019. Development and characterization of eutectic Sn-Zn, Sn-Ag, Sn-Bi and
Sn-Cu solder alloys. International Journal of Materials Research 110
(12): 1150-1159.
Rollett, A., Rohrer, G.S. &
Humphreys, J. 2017. Recrystallization and Related Annealing Phenomena.
3rd ed. Oxford: Elsevier.
Román-Ochoa, Y., Choque Delgado,
G.T., Tejada, T.R., Yucra, H.R., Durand, A.E. & Hamaker, B.R. 2021. Heavy
metal contamination and health risk assessment in grains and grain-based
processed food in Arequipa region of Peru. Chemosphere 2021: 129792.
Sonawane, P.D., Bupesh Raja, V.K.
& Gupta, M. 2021. Mechanical properties and corrosion analysis of lead-free
Sn-0.7Cu solder CSI joints on Cu substrate. Materials Today: Proceedings 46: 1101-1105.
Sonawwanay, P.D. & Raja, V.K.B.
2019. Advances in lead-free solders. International Journal of Mechanical
Engineering and Technology (IJMET) 10(2): 520-526.
Sun, Y., Chen, P., Liu, L., Yan, M.,
Wu, X., Yu, C. & Liu, Z. 2018. Local mechanical properties of Al CoCrCuFeNi
high entropy alloy characterized using nanoindentation. Intermetallics 93: 85-88.
Tang, Z., Jiang, F., Long, M., Jiang,
J., Liu, H. & Tong, M. 2020. Effect of annealing temperature on
microstructure, mechanical properties and corrosion behavior of Al-Mg-Mn-Sc-Zr
alloy. Applied Surface Science 514: 146081.
Xu, R., Liu, Y. & Sun, F. 2019.
Effect of isothermal aging on the microstructure, shear behavior and hardness
of the Sn58Bi/Sn3.0Ag0.5Cu/Cu solder joints. Results in Physics 15:
102701.
Zeng, H., Sui, H., Wu, S., Liu, J.,
Wang, H., Zhang, J. & Yang, B. 2021. Evolution of the microstructure and
properties of a Cu–Cr-(Mg) alloy upon thermomechanical treatment. Journal of
Alloys and Compounds 857: 157582.
Zhong, S.J., Zhang, L., Li, M.L.,
Long, W.M. & Wang, F.J. 2022. Development of lead-free interconnection materials
in electronic industry during the past decades: Structure and properties. Materials
and Design 215: 110439.
*Corresponding author; email: maria@ukm.edu.my
|