Sains Malaysiana 51(2)(2022): 461-472
http://doi.org/10.17576/jsm-2022-5102-11
Current Status of Genetically
Modified Baculovirus Insecticide for Pest Control
(Status Terkini Racun Serangga Bakulovirus
Terubah Suai Genetik untuk Kawalan Serangga Perosak)
MUHAMMAD AZHARUDDIN AZALI1, 2,
SALMAH MOHAMED2, AZIAN HARUN3, SHAHARUM SHAMSUDDIN4 & MUHAMMAD FARID JOHAN1*
1Department of Haematology, School of Medical Sciences, Universiti
Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
2School of Agriculture Science and Biotechnology, Faculty of
Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut,
Terengganu Darul Iman, Malaysia
3Department of Medical Microbiology and Parasitology, School
of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan
Darul Naim, Malaysia
4School of Health Sciences, Universiti Sains Malaysia, 16150
Kubang Kerian, Kelantan Darul Naim, Malaysia
Received: 17 January 2021/Accepted:
28 May 2021
ABSTRACT
Baculovirus is an insect specific
virus which is harmless to human. This feature has made it suitable to be
applied as biopesticide. It has been used to control the insect pest
particularly in agriculture sector for half a century and several success
stories have been shared. Nevertheless, this insecticide still cannot compete
with the synthetic pesticides owing to its slow killing speed and deficiency of
compatible hosts. Genetically engineered baculovirus has improved pathogenicity
against insect by incorporating foreign genes. These foreign genes encode
neurotoxin, hormones, enzymes, and antisense DNA. Expression of these genes can
enhance the insecticidal activities of the recombinant baculovirus. Nonetheless,
the genetically modified baculovirus still has not been commercialised until
today. This might be associated with the concern about the release of the
genetically modified organism (GMO) into the environment as the environmental
impact of the genetically modified virus is not well understood. Furthermore,
it has been found to have effect on certain parasitoid. In conclusion, genetic
modifications of the baculovirus have successfully improved its insecticidal
activities but insufficient knowledge about its safety has limited its use in
the field.
Keywords: Baculovirus insecticide;
biopesticide; insecticidal gene; neurotoxin
ABSTRAK
Bakulovirus adalah virus khusus
terhadap serangga yang tidak berbahaya kepada manusia. Ciri ini menyebabkan ia
sesuai digunakan sebagai bio-racun perosak. Ia telah digunakan untuk mengawal
serangga perosak terutamanya dalam sektor pertanian selama setengah abad dan
beberapa kejayaan telah dikongsikan. Walau bagaimanapun, penggunaan racun
serangga ini tidak dapat mengatasi racun serangga sintetik disebabkan kadar
pembunuhannya yang perlahan dan kekurangan hos yang bersesuaian. Pengubahsuaian
genetik bakulovirus telah menambah baik kepatogenan bakulovirus terhadap
serangga dengan memasukkan gen asing ke dalamnya. Gen asing ini mengekodkan
neurotoksin, hormon, enzim dan DNA antisens. Pengekspresan gen ini dapat
meningkatkan aktiviti insektisid bakulovirus rekombinan. Namun demikian,
bakulovirus terubah suai genetik masih tidak dipasarkan sehingga kini. Ini
mungkin berpunca daripada kegusaran terhadap pelepasan organisma terubah suai
genetik (GMO) ke persekitaran memandangkan kesan virus terubah suai genetik
terhadap persekitaran masih belum difahami sepenuhnya. Tambahan pula, ia telah
didapati memberi kesan terhadap parasitoid tertentu. Secara kesimpulannya,
pengubahsuaian genetik terhadap bakulovirus telah berjaya meningkatkan aktiviti
insektisid tetapi kurangnya pengetahuan tentang keselamatan terhadap
penggunaannya telah mengehadkan penggunaannya di lapangan.
Kata kunci: Bakulovirus insektisid; Bio-racun perosak; gen insektisid;
neurotoksin
REFERENCES
Ali, M.P., Kato, T. & Park, E.Y.
2015. Improved insecticidal activity of a recombinant baculovirus expressing
spider venom cyto-insectotoxin. Applied
Microbiology and Biotechnology 99(23): 10261-10269.
Ardisson-Araújo, D.M.P., Morgado,
F.D.S., Schwartz, E.F., Corzo, G. & Ribeiro, B.M. 2013. A new theraphosid
spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection. PloS
ONE 8(12): e84404.
Assenga, S.P., You, M., Shy, C.H.,
Yamagishi, J., Sakaguchi, T., Zhou, J., Kibe, M.K., Xuan, X. & Fujisaki, K.
2006. The use of a recombinant baculovirus expressing a chitinase from the hard
tick Haemaphysalis longicornis and its
potential application as a bioacaricide for tick control. Parasitology Research 98(2): 111-118.
Beas-Catena, A., Sánchez-Mirón, A.,
García-Camacho, F., Contreras-Gómez, A. & Molina-Grima, E. 2014.
Baculovirus biopesticides: An overview. Journal
of Animal and Plant Sciences 24(2): 362-373.
Bel Haj Rhouma, R., Cérutti-Duonor,
M., Benkhadir, K., Goudey-Perrière, F., El Ayeb, M., Lopez-Ferber, M. &
Karoui, H. 2005. Insecticidal effects of Buthus
occitanus tunetanus BotIT6 toxin expressed in Escherichia coli and baculovirus/insect cells. Journal of Insect Physiology 51(12): 1376-1383.
Bonning, B.C. & Nusawardani, T.
2007. Introduction to the use of baculoviruses as biological insecticides. Methods in Molecular Biology 388:
359-366.
Bonning, B.C., Possee, R.D. &
Hammock, B.D. 1999. Insecticidal efficacy of a recombinant Baculovirus
expressing JHE-KK, a modified juvenile hormone esterase. Journal of Invertebrate Pathology 73(2): 234-236.
Bonning, B.C., Ward, V.K., van Meer,
M.M., Booth, T.F. & Hammock, B.D. 1997. Disruption of lysosomal targeting
is associated with insecticidal potency of juvenile hormone esterase. Proceedings of the National Academy of
Sciences of the United States of America 94(12): 6007-6012.
Bonning, B.C., Hirst, M., Possee, R.D. & Hammock, B.D.
1992. Further development of a recombinant baculovirus insecticide expressing
the enzyme juvenile hormone esterase from Heliothis
virescens. Insect Biochemistry and
Molecular Biology 22(5): 453-458.
Carbonell, L.F., Hodge, M.R.,
Tomalski, M.D. & Miller, L.K. 1988. Synthesis of a gene coding for an
insect-specific scorpion neurotoxin and attempts to express it using
baculovirus vectors. Gene 73(2):
409-418.
Chang, J.H., Choi, J.Y., Jin, B.R.,
Roh, J.Y., Olszewski, J.A., Seo, S.J., O’Reilly, D.R. & Je, Y.H. 2003. An
improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. Journal of Invertebrate Pathology 84(1):
30-37.
Choi, J.Y., Jung, M.P.P., Park,
H.H.H., Tao, X.Y., Jin, B.R. & Je, Y.H. 2013. Insecticidal activity of
recombinant baculovirus co-expressing Bacillus
thuringiensis crystal protein and Kunitz-type toxin isolated from the venom
of bumblebee Bombus ignitus. Journal of Asia-Pacific Entomology 16(1): 75-80.
Cory, J.S., Hirst, M.L., Williams,
T., Hails, R.S., Goulson, D., Green, B.M., Carty, T.M., Possee, R.D., Cayley,
P.J. & Bishop, D.H.L. 1994. Field trial of a genetically improved
baculovirus insecticide. Nature 370(6485): 138-140.
Cramer, H.H. 1967. Plant Protection and World Crop Production.
Leverkusen: Farbenfabriken Bayer AG.
Deng, S.Q., Chen, J.T., Li, W.W.,
Chen, M. & Peng, H.J. 2019. Application of the scorpion neurotoxin AaIT
against insect pests. International Journal
of Molecular Sciences 20(14): 3467-3475.
Dhaliwal, G.S., Jindal, V. &
Mohindru, B. 2015. Crop losses due to insect pests: Global and Indian scenario. Indian Journal of Entomology 77(2):
165-168.
Eldridge, R., O’Reilly, D.R. &
Miller, L.K. 1992a. Efficacy of a baculovirus pesticide expressing an eclosion
hormone gene. Biological Control 2(2): 104-110.
Eldridge, R., O’Reilly, D.R.,
Hammock, B.D. & Miller, L.K. 1992b. Insecticidal properties of genetically
engineered baculoviruses expressing an insect juvenile hormone esterase gene. Applied and Environmental Microbiology 58(5): 1583-1591.
El-Sheikh, E.S.A., Kamita, S.G., Vu,
K. & Hammock, B.D. 2011. Improved insecticidal efficacy of a recombinant
baculovirus expressing mutated JH esterase from Manduca sexta. Biological Control 58(3): 354-361.
Fu, Y., Li, X., Du, J., Zheng, S.
& Liang, A. 2015. Regulation analysis of AcMNPV-mediated expression of a
Chinese scorpion neurotoxin under the IE1, P10 and PH promoter in vivo and its use as a potential
bio-insecticide. Biotechnology Letters 37(10): 1929-1936.
Gershburg, E., Stockholm, D., Froy,
O., Rashi, S., Gurevitz, M. & Chejanovsky, N. 1998. Baculovirus-mediated
expression of a scorpion depressant toxin improves the insecticidal efficacy
achieved with excitatory toxins. FEBS
Letters 422(2): 132-136.
Gramkow, A.W., Perecmanis, S.,
Sousa, R.L.B., Noronha, E.F., Felix, C.R., Nagata, T. & Ribeiro, B.M. 2010.
Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses. Virology Journal 7(1): 143-152.
Haase, S., Sciocco-Cap, A. &
Romanowski, V. 2015. Baculovirus insecticides in Latin America: Historical
overview, current status and future perspectives. Viruses 7(5): 2230-2267.
Hernandez-Crespo, P., Sait, S.M., Hails, R.S. & Cory,
J.S. 2001. Behavior of a recombinant baculovirus in lepidopteran hosts with
different susceptibilities. Applied and
Environmental Microbiology 67(3): 1140-1146.
Hernandez-Crespo, P., Hails, R.S.,
Sait, S.M., Green, B.M., Carty, T.M. & Cory, J.S. 1999. Response of
permissive and semi-permissive hosts to a recombinant baculovirus insecticide
in the field. Biological Control 16(2): 119-127.
Iyaniwura, T.T. 1991. Non-target and
environmental hazards of pesticides. Reviews
on Environmental Health 9(3): 161-176.
Jarvis, D.L., Reilly, L.M., Hoover,
K., Schultz, C., Hammock, B.D. & Guarino, L.A. 1996. Construction and
characterization of immediate early baculovirus pesticides. Biological Control 7(2): 228-235.
Jinn, T.R., Tu, W.C., Lu, C.I. &
Tzen, J.T.C. 2006. Enhancing insecticidal efficacy of baculovirus by early
expressing an insect neurotoxin, LqhIT2, in infected Trichoplusia ni larvae. Applied Microbiology and Biotechnology 72(6): 1247-1253.
Kamita, S.G. & Hammock, B.D.
2010. Juvenile hormone esterase: Biochemistry and structure. Journal of Pesticide Science 35(3):
265-274.
Kergunteuil, A., Bakhtiari, M.,
Formenti, L., Xiao, Z., Defossez, E. & Rasmann, S. 2016. Biological control
beneath the feet: A review of crop protection against insect root herbivores. Insects 7(4): 70-91.
Korth, K.L. & Levings III, C.S.
1993. Baculovirus expression of the maize mitochondrial protein URF13 confers
insecticidal activity in cell cultures and larvae. Proceedings of the National Academy of Sciences of the United States of
America 90(8): 3388-3392.
Kreutzweiser, D., England, L.,
Shepherd, J., Conklin, J. & Holmes, S. 2001. Comparative effects of a
genetically engineered insect virus and a growth-regulating insecticide on
microbial communities in aquatic microcosms. Ecotoxicology and Environmental Safety 48(1): 85-98.
Lee, H.H., Moon, E.S., Lee, S.T.,
Hwang, S.H., Cha, S.C. & Yoo, K.H. 1998. Construction of a baculovirus Hyphantria cunea NPV insecticide
containing the insecticidal protein gene of Bacillus
thuringiensis subsp. kurstaki HD1. Journal
of Microbiology and Biotechnology 8(6): 685-691.
Lee, S.Y., Qu, X., Chen, W.,
Poloumienko, A., MacAfee, N., Morin, B., Lucarotti, C. & Krause, M. 1997.
Insecticidal activity of a recombinant baculovirus containing an antisense
c-myc fragment. Journal of General
Virology 78(1): 273-281.
Lei, C., Yang, S., Lei, W.,
Nyamwasa, I., Hu, J. & Sun, X. 2019. Displaying enhancing factors on the
surface of occlusion bodies improves the insecticidal efficacy of a
baculovirus. Pest Management Science 76(4): 1363-1370.
Li, J., Zhou, Y., Lei, C., Fang, W.
& Sun, X. 2015. Improvement in the UV resistance of baculoviruses by
displaying nano-zinc oxide-binding peptides on the surfaces of their occlusion
bodies. Applied Microbiology and
Biotechnology 99(16): 6841-6853.
Maeda, S. 1989. Increased
insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic
hormone gene. Biochemical and Biophysical
Research Communications 165(3): 1177-1183.
Maeda, S., Volrath, S.L., Hanzlik,
T.N., Harper, S.A., Majima, K., Maddox, D.W., Hammock, B.D. & Fowler, E.
1991. Insecticidal effects of an insect-specific neurotoxin expressed by a
recombinant baculovirus. Virology 184(2): 777-780.
Martens, J.W., Knoester, M., Weijts,
F., Groffen, S.J., Hu, Z., Bosch, D. & Vlak, J.M. 1995. Characterization of
baculovirus insecticides expressing tailored Bacillus thuringiensis CryIA(b) crystal proteins. Journal of Invertebrate Pathology 66(3):
249-257.
McNitt, L., Espelie, K.E. &
Miller, L.K. 1995. Assessing the safety of toxin-producing baculovirus
biopesticides to a nontarget predator, the Social Wasp Polistes metricus Say. Biological
Control 5(2): 267-278.
Merryweather, A.T., Weyer, U.,
Harris, M.P., Hirst, M., Booth, T. & Possee, R.D. 1990. Construction of
genetically engineered baculovirus insecticides containing the Bacillus thuringiensis subsp. kurstaki
HD-73 delta endotoxin. Journal of General
Virology 71(7): 1535-1544.
Moscardi, F. 1999. Assessment of the
application of baculoviruses for control of lepidoptera. Annual Review of Entomology 44: 257-289.
Nusawardani, T., Ruberson, J.R.,
Obrycki, J.J. & Bonning, B.C. 2005. Effects of a protease-expressing
recombinant baculovirus insecticide on the parasitoid Cotesia marginiventris (Cresson). Biological Control 35(1): 46-54.
O’reilly, D.R. & Miller, L.K.
1991. Improvement of a baculovirus pesticide by deletion of the egt gene. Nature Biotechnology 9(11): 1086-1089.
Pazmiño-Ibarra, V., Mengual-Martí,
A., Targovnik, A.M. & Herrero, S. 2019. Improvement of baculovirus as
protein expression vector and as biopesticide by CRISPR/Cas9 editing. Biotechnology and Bioengineering 116(11): 2823-2833.
Petrik, D.T., Iseli, A., Montelone,
B.A., Van Etten, J.L. & Clem, R.J. 2003. Improving baculovirus resistance
to UV inactivation: Increased virulence resulting from expression of a DNA
repair enzyme. Journal of Invertebrate
Pathology 82(1): 50-56.
Popham, H.J.R., Li, Y. & Miller,
L.K. 1997. Genetic improvement of Helicoverpa
zea nuclear polyhedrosis virus as a biopesticide. Biological Control 10(2): 83-91.
Rajendra, W., Hackett, K.J.,
Buckley, E. & Hammock, B.D. 2006. Functional expression of
lepidopteran-selective neurotoxin in baculovirus: Potential for effective pest
management. Biochimica et Biophysica Acta 1760(2): 158-163.
Ran, Z., Shi, X., Han, F., Li, J.,
Zhang, Y., Zhou, Y., Yin, J., Li, R. & Zhong, J. 2018. Expressing microRNA
bantam sponge drastically improves the insecticidal activity of baculovirus via
increasing the level of ecdysteroid hormone in Spodoptera exigua larvae. Frontiers
in Microbiology 9: 1824-1834.
Regev, A., Rivkin, H., Gurevitz, M.
& Chejanovsky, N. 2006. New measures of insecticidal efficacy and safety
obtained with the 39K promoter of a recombinant baculovirus. FEBS Letters 580(30): 6777-6782.
Regev, A., Rivkin, H., Inceoglu, B.,
Gershburg, E., Hammock, B.D., Gurevitz, M. & Chejanovsky, N. 2003. Further
enhancement of baculovirus insecticidal efficacy with scorpion toxins that
interact cooperatively. FEBS Letters 537(1-3): 106-110.
Shao, H.L., Dong, D.J., Hu, J.D.,
Wang, J.X. & Zhao, X.F. 2008. Construction of the recombinant baculovirus
AcMNPV with cathepsin B-like proteinase and its insecticidal activity against Helicoverpa armigera. Pesticide Biochemistry and Physiology 91(3): 141-146.
Shen, S., Gan, Y., Wang, M., Hu, Z.,
Wang, H. & Deng, F. 2012. Incorporation of GP64 into Helicoverpa armigera nucleopolyhedrovirus enhances virus
infectivity in vivo and in vitro. Journal of General Virology 93(12): 2705-2711.
Shim, H.J., Choi, J.Y., Wang, Y.,
Tao, X.Y., Liu, Q., Roh, J.Y., Kim, J.S., Kim, W.J., Woo, S.D., Jin, B.R. &
Je, Y.H. 2013. NeuroBactrus, a novel, highly effective, and environmentally
friendly recombinant baculovirus insecticide. Applied and Environmental Microbiology 79(1): 141-149.
Stewart, L.M., Hirst, M., López
Ferber, M., Merryweather, A.T., Cayley, P.J. & Possee, R.D. 1991.
Construction of an improved baculovirus insecticide containing an
insect-specific toxin gene. Nature 352(6330): 85-88.
Szolajska, E., Poznanski, J.,
Ferber, M.L., Michalik, J., Gout, E., Fender, P., Bailly, I., Dublet, B. &
Chroboczek, J. 2004. Poneratoxin, a neurotoxin from ant venom. Structure and
expression in insect cells and construction of a bio-insecticide. European Journal of Biochemistry 271(11):
2127-2136.
Thompson, C.G., Scott, D.W. &
Wickman, B.E. 1981. Long-term persistence of the nuclear polyhedrosis virus of
the Douglas-Fir Tussock moth, Orgyia
pseudotsugata (Lepidoptera: Lymantriidae), in forest soil. Environmental Entomology 10(2):
254-255.
Tomalski, M.D. & Miller, L.K.
1991. Insect paralysis by baculovirus-mediated expression of a mite neurotoxin
gene. Nature 352(6330): 82-85.
Wan, H., Zhang, Y., Zhao, X., Ji,
J., You, H. & Li, J. 2015. Enhancing the insecticidal activity of
recombinant baculovirus by expressing a growth-blocking peptide from the beet
armyworm Spodoptera exigua. Journal of Asia-Pacific Entomology 18(3): 535-539.
Wood, H.A. & Granados, R.R.
1991. Genetically engineered baculoviruses as agents for pest control. Annual Review of Microbiology 45: 69-87.
Yang, S., Zhao, L., Ma, R., Fang,
W., Hu, J., Lei, C. & Sun, X. 2017. Improving baculovirus infectivity by
efficiently embedding enhancing factors into occlusion bodies. Applied and Environmental Microbiology 83(14): e00595-17.
*Corresponding
author; email: faridjohan@usm.my
|