Sains Malaysiana 52(4)(2023): 1133-1143

http://doi.org/10.17576/jsm-2023-5204-08

 

Functional Characterization of a Novel Synthetic Herbicide Resistance Gene in a Model Plant

(Pencirian Fungsian Gen Rintangan Herbisid Sintetik Novel dalam Model Tumbuhan)

 

SARWAT1, SHEHLA SHOUKAT1,2, MUHAMMAD AMIR ZIA2 & SHAUKAT ALI2,*

 

1PARC Institute of Advanced Studies in Agriculture, Islamabad, Pakistan

2National Institute for Genomics and Advanced Biotechnology, P.O. Box 45000, National Agricultural Research Centre, Islamabad, Pakistan

 

Received: 4 April 2022/Accepted: 17 March 2023

 

Abstract

As crop losses can occur owing to the abrupt growth of uncontrollable weeds in the field, research is currently being conducted in Pakistan to eradicate herbs. To carry out our proposed research domain, we have designed a novel synthetically modified EPSPS gene that has a potent role in herbicide-resistance development. The novel codon-optimized synthesized mEPSPS sequence was inserted into the pXCSG-mYFP plant expression vector. Results of colony PCR (1400 bp) confirmed the integration of genes into bacteria. For functional validation of pXCSG-mYFP-EPSPS, transient expression in tobacco (Nicotiana benthamiana) in comparison with PBSF-16 was done. Benth infiltration results showed that transient expression was successfully confirmed through ELISA and western blot analysis via anti-YFP antibody in tobacco leaves. For further validation of transient expression, the stable transformation results of the pXCSG-mYFP-EPSPS vector showed that successful transformation was done via two days of co-cultivation followed by selection and regeneration of transformed tobacco plants. The regenerated tobacco plants were then confirmed through gene-specific-based PCR. After PCR-based confirmation, western blot further validates the 26 kDa anti-YFP antibodies expression in transformed tobacco plants. Another important finding of the study was the bar and PAT gene real-time expression elucidating that the bar gene was 4.9-fold more expressive under the 35S promoter than the PAT gene under the nos promoter.

 

Keywords: EPSPS gene; functional characterization; molecular analysis; tobacco; transformation

 

Abstrak

Memandangkan kepentingan penyelidikan semasa di Pakistan adalah untuk menghapuskan herba kerana kehilangan hasil boleh berlaku disebabkan oleh pertumbuhan mendadak rumpai yang tidak terkawal dalam amalan lapangan. Untuk melaksanakan domain penyelidikan kami yang dicadangkan, kami telah mereka bentuk gen EPSPS yang diubah suai secara sintetik novel yang mempunyai peranan yang kuat dalam pembangunan tahan herbisid. Urutan mEPSPS tersintesis yang dioptimumkan kodon novel telah dimasukkan ke dalam vektor ekspresi tumbuhan pXCSG-mYFP. Keputusan koloni PCR (1400 bp) mengesahkan integrasi gen ke dalam bakteria. Untuk pengesahan fungsi pXCSG-mYFP-EPSPS ekspresi sementara dalam tembakau (Nicotiana benthamiana) berbanding dengan PBSF-16 telah dilakukan. Keputusan penyusupan Benth mendedahkan bahawa ekspresi sementara telah berjaya dilakukan melalui pengesahan ELISA dan analisis pemblotan western melalui antibodi anti-YFP dalam daun tembakau. Untuk pengesahan lanjut bagi ekspresi sementara, keputusan transformasi stabil bagi vektor pXCSG-mYFP-EPSPS menunjukkan bahawa transformasi yang berjaya dilakukan melalui penanaman bersama selama dua hari diikuti dengan pemilihan dan penjanaan semula tumbuhan tembakau yang telah diubah. Tumbuhan tembakau yang dijana semula kemudiannya disahkan melalui PCR berasaskan gen khusus. Selepas pengesahan berasaskan PCR, pemblotan western mengesahkan lagi ekspresi antibodi anti-YFP 26 kDa dalam loji tembakau yang diubah. Satu lagi penemuan penting dalam kajian ini ialah ekspresi masa nyata gen bar dan PAT yang menjelaskan bahawa gen bar adalah 4.9 kali ganda lebih ekspresif di bawah promoter 35S berbanding gen PAT di bawah promoter nos.

 

Kata kunci: Analisis molekul; EPSPS; pencirian fungsi; tembakau; transformasi

 

REFERENCES

Chitty, J.A., Allen, R.S. & Larkin, P.J. 2006. Opium poppy (Papaver somniferum). In Agrobacterium Protocols Volume 2. Methods in Molecular Biology. Vol 344, edited by Wang, K. Humana Press. https://doi.org/10.1385/1-59745-131-2:383

Chou, T.C. & Moyle, R.L. 2014. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. BMC Plant Biol. 14: 92. https://doi.org/10.1186/1471-2229-14-92

Conze, T., Shetye, A., Tanaka, Y., Gu, J., Larsson, C., Göransson, J., Tavoosidana, G., Söderberg, O., Nilsson, M. & Landegren, U. 2009. Analysis of genes, transcripts, and proteins via DNA ligation. Annu. Rev. Anal. Chem. Palo Alto Calif. 2: 215-239.

Deb, C.R. & Imchen, T. 2010. An efficient in vitro hardening of tissue culture raised plants. Biotechnology 9: 79-83.

Délye, C., Jasieniuk, M. & Le Corre, V. 2013. Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics 29(11): 649-658. https://doi.org/10.1016/j.tig.2013.06.001

Fartyal, D., Agarwal, A., James, D., Borphukan, B., Ram, B., Sheri, V., Agrawal, P.K., Achary, V. & Reddy, M.K. 2018. Developing dual herbicide tolerant transgenic rice plants for sustainable weed management. Scientific Reports 8(1): 11598. https://doi.org/10.1038/s41598-018-29554-9

Feys, B.J., Wiermer, M., Bhat, R.A., Moisan, L.J., Medina-Escobar, N., Neu, C. & Parker, J.E. 2005. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. The Plant Cell 17(9): 2601-2613.

Greenfield, A. 2021. Cloning, mitochondrial replacement and genome editing: 25 years of ethical debate since Dolly. Reproduction. doi: 10.1530/rep-20-0635

Horvath, D.P., Kudrna, D., Talag, J., Anderson, J.V., Chao, W.S., Wing, R., Foley, M.E. & Doğramaci, M. 2013. BAC library development and clone characterization for dormancy-Responsive DREB4A, DAM, and FT from Leafy Spurge (Euphorbia esula) identifies differential splicing and conserved promoter motifs. Weed Science 61(2): 303-309. http://www.jstor.org/stable/43699803

Hughes, R.A. & Ellington, A.D. 2017. Synthetic DNA synthesis and assembly: Putting the synthetic in synthetic biology. Cold Spring Harbor Perspectives in Biology 9(1): a023812. https://doi.org/10.1101/cshperspect.a023812

Landy, A. 1989. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annual Review of Biochemistry 58: 913-949. https://doi.org/10.1146/annurev.bi.58.070189.004405

Norkunas, K., Harding, R., Dale, J. & Dugdale, B. 2018. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14(1). doi: 10.1186/s13007-018-0343-2

Osman, G.H., Soltane, R., Saleh, I., Abulreesh, H.H., Gazi, K.S., Arif, I.A., Ramadan, A.M., Alameldin, H.F., Osman, Y.A. & Idriss, M. 2019. Isolation, characterization, cloning and bioinformatics analysis of a novel receptor from black cut worm (Agrotis ipsilon) of Bacillus thuringiensis vip 3Aa toxins. Saudi Journal of Biological Sciences 26(5): 1078-1083. doi: 10.1016/j.sjbs.2018.06.002

Owen, M.J., Goggin, D.E. & Powles, S.B. 2012. Non-target-site-based resistance to ALS-inhibiting herbicides in six Bromus rigidus populations from Western Australian cropping fields. Pest Manag. Sci. 68: 1077-1082.

Pouyet, F., Mouchiroud, D., Duret, L. & Sémon, M. 2017. Recombination, meiotic expression and human codon usage. Elife 6. doi: 10.7554/elife.27344

Quinn, J.P. 1990. Evolving strategies for the genetic engineering of herbicide resistance in plants. Biotechnology Advances 8(2): 321-333. https://doi.org/10.1016/0734-9750(90)91068-r

Reece-Hoyes, J.S. & Walhout, A. 2018. Gateway recombinational cloning. Cold Spring Harbor Protocols 2018(1): pdb.top 094912. https://doi.org/10.1101/pdb.top094912

Steinrücken, H.C. & Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochemical and Biophysical Research Communications 94: 1207-1212. https://doi.org/10.1016/0006-291X(80)90547-1

Tyurin, A.A., Suhorukova, A.V., Kabardaeva, K.V. & Goldenkova-Pavlova, I.V. 2020. Transient gene expression is an effective experimental tool for the research into the fine mechanisms of plant gene function: Advantages, limitations, and solutions. Plants 9(9): 1187. https://doi.org/10.3390/plants9091187

Vargas, R.N. & Wright, S.D. 2005. UCIPM Pest Management Guidelines: Cotton. Division of Agriculture and Natural Resources, University of California, Statewide IPM Program Publication 3444.

Webster, T.M. & Sosnoskie, L.M. 2010. Loss of glyphosate efficacy: A changing weed spectrum in Georgia cotton. Weed Science 58(1): 73-79.

Welch, M., Govindarajan, S., Ness, J.E., Villalobos, A., Gurney, A., Minshull, J. & Gustafsson, C. 2009. Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE 4(9): e7002. https://doi.org/10.1371/journal.pone.0007002

Wilson, R.G. & Orloff, S.B. 2008. Winter annual weed control with herbicides in alfalfa-orchard grass mixtures. Weed Technology 22(1): 30-33. http://www.jstor.org/stable/25194987

Wohlleben, W., Arnold, W., Broer, I., Hillemann, D., Strauch, E. & Pühler, A. 1988. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromo genes Tü494 and its expression in Nicotiana tabacum. Gene 70(1): 25-37. https://doi.org/10.1016/0378-1119(88)90101-1

Zheng, L., Yang, J., Chen, Y., Ding, L., Wei, J. & Wang, H. 2021. An improved and efficient method of Agrobacterium syringe infiltration for transient transformation and its application in the elucidation of gene function in poplar. BMC Plant Biol. 21: 54. https://doi.org/10.1186/s12870-021-02833-w

Zobiole, L.H.S., Junior, R.S.D.O., Kremer, R.J., Muniz, A.S. & Junior, A.D.O. 2010. Nutrient accumulation and photosynthesis in glyphosate-resistant soybeans is reduced under glyphosate use. Journal of Plant Nutrition 33(12): 1860-1873.

 

*Corresponding author; email: shaukat_parc@yahoo.co.in

 

 

 

 

 

 

previous