Sains Malaysiana 52(4)(2023):
1259-1272
http://doi.org/10.17576/jsm-2023-5204-17
Optimization of Tween 80 and PEG-400
Concentration in Indonesian Virgin Coconut Oil Nanoemulsion as Antibacterial
against Staphylococcus aureus
(Pengoptimuman Kepekatan Tween 80 dan PEG-400 dalam
Nanoemulsi Minyak Kelapa Dara Indonesia sebagai Antibakteria terhadap Staphylococcus aureus)
MIKSUSANTI1,
ELSA FITRIA APRIANI2,* & AZZAHRA HITHTHAH BAMA BIHURININ2
1Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas
Sriwijaya, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South Sumatra,
Indonesia
2Department
of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas
Sriwijaya, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South Sumatra,
Indonesia
Received: 25 October 2022/Accepted: 6 March 2023
Abstract
Virgin Coconut
Oil (VCO) can act as an antibacterial due to free fatty acids. To increase the
stability of VCO, the VCO can be formed into nanoemulsion preparations. This
study aimed to optimize the concentration of Tween 80 and Polyethylene
glycol-400 (PEG-400) in nanoemulsion formula and determine antibacterial
activity against Staphylococcus aureus. The content of VCO was
determined using Gas Chromatography-Mass Spectrometry (GC-MS), and the results
showed that VCO contained lauric acid, palmitic acid, caprylic acid, oleic
acid, capric acid, and stearic acid. Optimization was carried out using the 22 factorial design method on the response of pH, density, percent transmittance,
particle size, and polydispersity index. The optimum formula was obtained at
concentrations of Tween 80 and PEG-400 40% and 26%, respectively, with a
desirability value of 0.961. The optimum formula showed no phase separation and
a significant decrease in pH (p>0.05). The optimum and comparison formula
(pure VCO) had significantly different antibacterial activity (p<0.05) where
the diameter of the inhibition zone was 24.77±1.66 mm and 16.73±2.00 mm,
Minimum Inhibitory Concentration (MIC) of 1250 ppm and 2500 ppm, Minimum
Bactericidal Concentration (MBC) of 2500 ppm and more than 2500 ppm,
respectively. The optimum formula of VCO nanoemulsion was proven to have good
stability and a potent antibacterial activity.
Keywords: Antibacterial;
factorial design; nanoemulsion; Staphylococcus
aureus; virgin coconut oil
Abstrak
Minyak Kelapa Dara (VCO) boleh
bertindak sebagai antibakteria kerana kandungan asid lemak bebas. Bagi
meningkatkan kestabilan VCO, ia boleh disediakan dalam bentuk nano-emulsi.
Tujuan kajian ini dijalankan adalah untuk mendapatkan kepekatan yang optimum
bagi Tween 80 dan Polietilena glikol-400 (PEG-400) di dalam formulasi
nano-emulsi dan untuk menentukan aktiviti antibakteria terhadap Staphylococcus
aureus. Kandungan VCO telah dianalisis dengan menggunakan Kromatografi
gas–spektrometri jisim (GC-MS) dan hasilnya menunjukkan VCO mengandungi asid
laurik, asid palmitik, asid kaprilat, asid oleik, asid kaprik dan asid stearik.
Pengoptimuman telah dijalankan menggunakan kaedah reka bentuk faktorial 22 pada tindak balas pH, ketumpatan, peratus transmisi, saiz zarah dan indeks
polidispersiti. Formula optimum didapati pada kepekatan Tween 80 dan PEG-400
masing-masing 40% dan 26%, dengan nilai kemahuan 0.961. Formula optimum juga
menunjukkan tiada pemisahan campuran mahupun penurunan pH yang ketara
(p>0.05). Formula optimum dan perbandingannya (VCO tulen) didapati mempunyai
aktiviti antibakteria yang berbeza secara signifikan (p<0.05) dengan
diameter zon inhibasi masing-masing ialah 24.77±1.66 mm dan 16.73±2.00 mm,
Kepekatan Perencatan Minimum (MIC) 1250 ppm dan 2500 ppm dan Kepekatan Bakteria
Minimum (MBC) 2500 ppm dan lebih daripada 2500 ppm. Formula optimum nano-emulsi
VCO terbukti mempunyai kestabilan yang baik dan aktiviti antibakteria yang
tinggi.
Kata kunci: Antibakteria; minyak kelapa dara; nano-emulsi;
reka bentuk faktor; Staphylococcus aureus
REFERENCES
Abllah, Z. & Shahdan, I. 2018. Virgin coconut oil and its antimicrobial properties against
pathogenic microorganisms: A review. Journal of Research in Health Sciences 8: 192-199. https://doi.org/10.2991/IDCSU-17.2018.51
Agarwal,
R. 2017. Extraction processes of virgin coconut oil. Food Processing &
Technology 4: 1-3. https://doi.org/10.15406/mojfpt.2017.04.00087
Álvarez-Chimal,
R., García-Pérez, V.I., Álvarez-Pérez, M.A., Tavera-Hernández, R.,
Reyes-Carmona, L., Martínez-Hernández, K. & Arenas-Alatorre, J.A. 2022.
Influence of the particle size on the antibacterial activity of green
synthesized zinc oxide nanoparticles using Dysphania
ambrosioides extract, supported by molecular docking analysis. Arabian
Journal of Chemistry 15(6): 10384. https://doi.org/10.1016/j.arabjc.2022.103804
Anzaku, A.A., Akyala, A., Adeola, J. & Ewenighi, C. 2017. Antibacterial activity of lauric
acid on some selected clinical isolates. Annals of Clinical and Laboratory
Research 5: 1-5. https://doi.org/10.21767/2386-5180.1000170
Apriani,
E.F., Miksusanti, M. & Fransiska, N. 2022. Formulation and optimization
peel-off gel mask with polyvinyl alcohol and gelatin based using factorial
design from banana peel flour (Musa
paradisiaca L) as antioxidant. Indonesian Journal of Pharmacy 33(2):
261-268. https://doi.org/10.22146/ijp.3408
Apriani, E.F., Mardiyanto, M. &
Hendrawan, A. 2022. Optimization of green synthesis of silver nanoparticles
from Areca catechu L. seed extract with variations of silver nitrate and extract concentrations
using simplex lattice design method. Farmacia 70(5): 917-924. https://doi.org/10.31925/farmacia.2022.5.18
Aziz,
A. & Aziz, S. 2018. Application of box behnken design to optimize the
parameters for kenaf-epoxy as noise absorber. IOP Conference Series:
Materials Science and Engineering 454: 1-10.
https://doi.org/10.1088/1757-899X/454/1/012001
Azmi,
N.A.N., Elgharbawy, A.A.M., Motlagh, S.R., Samsudin, N. & Salleh, H.M.
2019. Nanoemulsions: Factory for food, pharmaceutical and cosmetics. Processes 7(617): 1-34. https://doi.org/10.3390/pr7090617
Boateng, L., Ansong, R., Owusu, W.B. &
Steiner-Asiedu, M. 2016. Coconut oil and palm oil's role in nutrition, health
and national development: A review. Ghana Med. J. 50(3): 189-196.
Boby,
J. 2013. Application of desirability function for optimizing the performance
characteristics of carbonitrided bushes. International Journal of Industrial
Engineering Computations 4: 305-314. https://doi.org/10.5267/j.ijiec.2013.04.003
Cecchini, M.E., Paoloni, C., Campra, N., Picco, N.,
Grosso, M.C., Soriano-Perez, M.L., Alustiza, F., Cariddi, N. & Bellingeri,
R. 2021. Nanoemulsion of Minthostachys verticillata essential
oil. In-vitro evaluation of its
antibacterial activity. Heliyon 7(1): e05896.
https://doi.org/10.1016/j.heliyon.2021.e05896
Chen, Y.S., Chiu, Y.H., Li, Y.S., Lin, E.Y., Hsieh,
D.K., Lee, C.H., Huang, M.H., Chuang, H.M., Lin, S.Z., Harn, H.J. & Chiou,
T.W. 2019. Integration of PEG 400 into a self-nanoemulsifying drug delivery
system improves drug loading capacity and nasal mucosa permeability and
prolongs the survival of rats with malignant brain tumors. Int. J.
Nanomedicine 14: 3601-3613. https://doi.org/10.2147/IJN.S193617
Chuacharoen,
T., Prasongsuk, S. & Sabliov, C.M. 2019. Effect of surfactant
concentrations on physicochemical properties and functionality of curcumin
nanoemulsions under conditions relevant to commercial utilization. Molecules 24(2744): 1-12. https://doi.org/10.3390/molecules24152744
Clark, S.B. & Hicks, M.A. 2022. Staphylococcal Pneumonia. In StatPearls
[Internet]. Treasure Island (FL): StatPearls Publishing; Jan-. https://www.ncbi.nlm.nih.gov/books/NBK559152/
Desbois, A.P. & Smith, V.J. 2010. Antibacterial
free fatty acids: Activities, mechanisms of action and biotechnological
potential. Appl. Microbiol. Biotechnol. 85: 1629-1642. https://doi.org/10.1007/s00253-009-2355-3
Feßler, A.T., Li, J., Kadlec, K.,
Wang, Y. & Schwarz, S. 2008. Chapter 4 - Antimicrobial
resistance properties of Staphylococcus
aureus. In Staphylococcus aureus,
edited by Fetsch, A. Massachusetts: Academic Press. pp. 57-85. https://doi.org/10.1016/B978-0-12-809671-0.00004-8.
Figueiredo,
D., Junior, S. & Rocha, E. 2011. What is R2 all about? Leviathan-Cadernos
de Pesquisa Polútica 3: 60-68.
https://doi.org/10.11606/issn.2237-4485.lev.2011.132282
Fischer, C.L., Drake, D.R., Dawson, D.V., Blanchette,
D.R., Brogden, K.A. & Wertz, P.W. 2012. Antibacterial
activity of sphingoid bases and fatty acids against Gram-positive and
Gram-negative bacteria. Antimicrob
Agents Chemother. 56(3): 1157-1161.
https://doi.org/10.1128/AAC.05151-11
Gupta, A., Eral,
H.B., Hatton, T.A. & Doyle, P.S. 2016. Nanoemulsions:
Formation, properties and applications. Soft
Matter. 12: 2826-2841. https://doi.org/10.1039/C5SM02958A
Hasani, F., Pezeshki, A. & Hamishehkar, H. 2015. Effect
of surfactant and oil type on size droplets of betacarotene-bearing
nanoemulsions. Int. J. Curr. Microbiol. App. Sci. 4: 146-155.
Homayoonfal,
M., Khodaiyan, F. & Mousavi, S.M. 2014. Walnut oil nanoemulsion:
Optimization of the emulsion capacity, cloudiness, density, and surface
tension. Journal of Dispersion Science and Technology 35(5): 725-733.
https://doi.org/10.1080/01932691.2013.807742
Huang, C.B., George, B. & Ebersole, J.L. 2010.
Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for
oral microorganisms. Arch. Oral Biol. 55(8): 555-560.
https://doi.org/10.1016/j.archoralbio.2010.05.009
Kayili, E. & Sanlibaba, P. 2020. Prevalence,
characterization and antibiotic resistance of Staphylococcus aureus isolated from traditional cheeses in
Turkey. International Journal of Food
Properties 23(1): 10.1080/10942912.2020.1814323
Kenechukwu,
O., Chukwuemeka, O., Joy, I. & Edwin, E. 2022. Effect of virgin coconut
oil, lauric acid and myristic acid on serum and prostatic markers of benign
prostatic hyperplasia. Tropical Journal of Pharmaceutical Research 21:
809-815. https://doi.org/10.4314/tjpr.v21i4.18
Kotta,
S., Khan, A.W., Ansari, S.H., Sharma, R.K. & Ali, J. 2015. Formulation of
nanoemulsion: A comparison between phase inversion composition method and
high-pressure homogenization method. Drug Delivery 22(4): 455-466.
https://doi.org/10.3109/10717544.2013.866992
Kumar, S., Singh, S., Kumar, V.,
Datta, S., Sharma, P. & Singh, J. 2020. Pathogenesis and
antibiotic resistance of Staphylococcus
aureus. In Model Organisms for
Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery,
edited by Siddhardha, B., Dyavaiah, M. & Syed, A. Singapore: Springer. pp.
99-115. https://doi.org/10.1007/978-981-15-1695-5_7
Laxmi,
M., Bhardwaj, A., Mehta, S. & Mehta, A. 2015. Development and
characterization of nanoemulsion as carrier for the enhancement of
bioavailability of artemether. Artificial Cells, Nanomedicine, and
Biotechnology 43(5): 334-344. https://doi.org/10.3109/21691401.2014.887018
Liu, Q., Huang, H., Chen, H., Lin, J. & Wang, Q.
2019. Food-grade nanoemulsions: Preparation, stability and application in
encapsulation of bioactive compounds. Molecules 24(23): 4242.
https://doi.org/10.3390/molecules24234242
Lu,
H. & Tan, P.P. 2009. A comparative study of storage stability in virgin coconut oil and extra
virgin olive oil upon thermal treatment. International Food Research Journal 16: 343-354.
Man, G., Elias, P.M. & Man, M.Q. 2015. Therapeutic
benefits of enhancing permeability barrier for atopic eczema. Dermatologica
Sinica 33(2): 84-89. https://doi.org/10.1016/j.dsi.2015.03.006
Matsue, M., Mori, Y., Nagase, S., Sugiyama, Y.,
Hirano, R., Ogai, K., Ogura, K., Kurihara, S. & Okamoto, S. 2019. Measuring
the antimicrobial activity of lauric acid against various bacteria in human gut
microbiota using a new method. Cell Transplant 28(12): 1528-1541.
https://doi.org/ 10.1177/0963689719881366
Mardiyanto, M., Apriani, E.F. & Alfarizi, M.H.
2022. Formulation and in-vitro antibacterial activity of gel containing ethanolic extract of purple sweet
potato leaves (Ipomoea batatas (L.)
loaded poly lactic co-glycolic acid submicroparticles against Staphylococcus aureus. Research
Journal of Pharmacy and Technology 15(8): 3599-5.
https://doi.org/10.52711/0974-360X.2022.00603
Moghimi,
R., Aliahmadi, A., McClements, D.J. & Rafati, H. 2016. Investigations of
the effectiveness of nanoemulsions from sage oil as antibacterial agents on
some food borne pathogens. LWT - Food Science and Technology 71: 69-76. https://doi.org/10.1016/j.lwt.2016.03.018
Nakatsuji,
T., Kao, M., Fang, J.Y., Zouboulis, C., Zhang, L., Gallo, R. & Huang, C.M.
2009. Antimicrobial property of lauric acid against Propionibacterium acnes: Its therapeutic potential for inflammatory
acne vulgaris. The Journal of Investigative Dermatology 129: 2480-2488.
https://doi.org/10.1038/jid.2009.93
Nielsen, C.K., Kjems, J., Mygind, T., Snabe, T. &
Meyer, R.L. 2016. Effects of Tween 80 on growth and biofilm formation in laboratory
media. Front. Microbiol. 7(1878): 1-10.
https://doi.org/10.3389/fmicb.2016.01878
Noordin,
M.Y., Venkatesh, V.C., Sharif, S., Elting, S. & Abdullah, A. 2004.
Application of response surface methodology in describing the performance of
coated carbide tools when turning AISI 1045 steel. Journal of Materials
Processing Technology 15(1): 46-58. https://doi.org/10.1016/S0924-0136(03)00861-6
Nurhidayah,
E., Agustin, A., Indawati, I., Zamzam, M.Y. & Nabila, S.P. 2022. The characteristics of virgin coconut oil made in oil
fishing method and gradual heating. Jurnal Kesehatan Muhamadiyah 3(1):
35-40. https://doi.org/10.37874/mh.v3i1.400
Parker, D. & Prince, A. 2012. Immunopathogenesis
of Staphylococcus aureus pulmonary
infection. Semin Immunopathol. 34(2): 281-297. https://doi.org/10.1007/s00281-011-0291-7
Rowe,
R.C., Sheskey, P.J. & Quinn, M.E. 2009. Handbook
of Pharmaceutical Excipients. 6th ed. London: Pharmaceutical Press.
Rukmini,
A. & Raharjo, S. 2010. Pattern of peroxide value changes in virgin coconut
oil (VCO) due to photo-oxidation sensitized by chlorophyll. Journal of the
American Oil Chemists' Society 87: 1407-1412.
https://doi.org/10.1007/s11746-010-1641-7
Sarheed, O., Dibi, M. & Ramesh, K.V.R.N.S. 2020.
Studies on the effect of oil and surfactant on the formation of alginate-based
O/W lidocaine nanocarriers using nanoemulsion template. Pharmaceutics 12(12): 1223. https://doi.org/10.3390/pharmaceutics12121223
Shehata, T.M., Almostafa, M.M. & Elsewedy, H.S.
2022. Development and optimization of Nigella sativa nanoemulsion
loaded with pioglitazone for hypoglycemic effect. Polymers 14: 3021. https://doi.org/10.3390/polym14153021
Sivakanthan,
S., Bopitiya, D. & Madhujith, T. 2018. A comparative study on stability of
different types of coconut (Cocos
nucifera) oil against autoxidation and photo-oxidation. African Journal
of Food Science 12(9): 216-229. https://doi.org/10.5897/AJFS2018.1695
Su’i,
M., Sumaryati, E., Prasetyo, R. & Eric, P. 2015. Anti-bacteria activities
of lauric acid from coconut endosperm (Hydolysed using lipase Endogeneus). Advance
in Environmental Biology 9(23): 45-49.
Suryani, S., Sariani, S., Earnestly, F., Marganof, M.,
Rahmawati, R., Sevindrajuta, S., Mahlia, T.M.I. & Fudholi, A. 2020. A
comparative study of virgin coconut oil, coconut oil and palm oil in terms of
their active ingredients. Processes 8(402): 1-11. https://doi.org/10.3390/pr8040402
Standar Nasional Indonesia. 2008. SNI 7381:2008 Virgin Coconut Oil.
Jakarta: Badan Standardisasi Nasional. pp. 1-36.
Thakkar,
H., Nangesh, J., Parmar, M. & Patel, D. 2011. Formulation and
characterization of lipid-based drug delivery system of raloxifene
microemulsion and self-microemulsifying drug delivery system. J. Pharm.
Bioallied. Sci. 3(3): 442-448. https://doi.org/10.4103/0975-7406.84463
Tong, S.Y., Davis, J.S., Eichenberger, E., Holland,
T.L. & Fowler Jr., V.G. 2015. Staphylococcus
aureus infections: Epidemiology, pathophysiology, clinical manifestations,
and management. Clin. Microbiol. Rev. 28(3): 603-661.
https://doi.org/10.1128/CMR.00134-14
Ujilestari,
T., Dono, N., Ariyadi, B., Martien, R. & Zuprizal, Z. 2018. Formulation and
characterization of self-nano emulsifying drug delivery systems of lemongrass (Cymbopogon citratus) essential oil. Malaysian
Journal of Fundamental and Applied Sciences 14: 360-363.
https://doi.org/10.11113/mjfas.v14n3.1070
Wu, H.R., Wang, C.Q., Wang, J.X., Chen, J.F. & Le,
Y. 2020. Engineering of long-term stable transparent nanoemulsion using
high-gravity rotating packed bed for oral drug delivery. Int. J.
Nanomedicine 15: 2391-2402. https://doi.org/10.2147/IJN.S238788
*Corresponding author; email: elsafitria@mipa.unsri.ac.id
|