Sains Malaysiana 52(4)(2023): 1303-1314

http://doi.org/10.17576/jsm-2023-5204-20

 

Kesan Suhu Pensinteran terhadap Mikrostruktur dan Sifat Mekanikal Perovskit Seramik SrFe0.9Ti0.1O3-δ-SDC

(Effect of Sintering Temperature on the Microstructure and Mechanical Property of SrFe0.9Ti0.1O3-δ-SDC Ceramic Perovskite)

 

AZREEN JUNAIDA ABD AZIZ1, NURUL AKIDAH BAHARUDDIN1,*, MAHENDRA RAO SOMALU1, ANDANASTUTI MUCHTAR1,2 & SAHRIM HAJI AHMAD3

 

1Solid Oxide Fuel Cell Group, Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Department of Mechanical & Manufacturing Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received:31 January 2022/ Accepted: 20 March 2023

 

Abstrak

Kesan suhu sinter ke atas sifat bahan seramik perovskit SrFe0.9Ti0.1O3-δ-SDC dikaji di dalam penyelidikan ini. Pada asasnya, proses sinter dilakukan bagi memperkecilkan keliangan di dalam sesuatu bahan yang telah dipadatkan. Melalui kajian ini, tiga suhu digunakan untuk mengkaji kesan suhu sinter iaitu 1200, 1250, 1300 °C. Bahan seramik yang diperbuat daripada SDC terlebih dahulu dibentuk menjadi sel butang dengan mengenakan tekanan ekapaksi 5.2MPa. Dakwat seramik 5SrFe0.9Ti0.1O3-δ-5SDC dicetak ke atas kedua-dua permukaan sel butang bagi menghasilkan sel simetri elektrod/elektrolit/elektrod. Kesemua sel ini dibakar dengan 3 suhu sinter yang berbeza. Sifat fizikal dan morfologinya dikaji. Hasil kajian ini mendapati sel simetri yang dikenakan suhu yang berbeza mempengaruhi sifat bahan tersebut. Kenaikan suhu sinter menyebabkan bahan menjadi semakin aglomerat dan keliangan semakin berkurang sehingga 24.38%. Ketumpatan bahan juga semakin meningkat dan menyebabkan bahan mudah patah. Ketahanan bahan berkurang dengan kenaikan suhu. Dalam kajian ini, bahan 5SrFe0.9Ti0.1O3‒δ-5SDC didapati sesuai disinter pada suhu 1250 °C kerana memberikan nilai keliangan, kadar penggumpalan, ketumpatan dan dan ketahanan yang baik pada ketika itu.

 

Kata kunci: Kekerasan; mikrostruktur; pensinteran; perovskit; seramik

 

Abstract

Sintering temperature effects on perovskite ceramic SrFe0.9Ti0.1O3-δ-SDC was investigated in this research. A fact that the sintering process was carried out to reduce the porosity in the materials that have been pressed. Three different temperatures used in this research range from 1200, 1250, and 1300 °C. The button cell was developed from the ceramic material SDC with 5MPa pressure. 5SrFe0.9Ti0.1O3-δ-5SDC ink was printed on top of the button cell on each side to build a symmetrical cell with a configuration electrode/electrolyte/electrode. All symmetrical cells were sintered at 3 different temperatures. Physical and morphology were studied. It was found that symmetrical cells with different sintering temperatures show a different character. The porosity tends to decrease up to 24.38% with the increase of sintering temperature, therefore, increasing the agglomeration and decreasing the strength of the materials. In this study, the material 5SrFe0.9Ti0.1O3‒δ-5SDC is suitable to sinter at 1250 °C and gives the best porosity, aggregation rate, and density while providing a good endurance.

 

Keywords: Ceramic; hardness; microstructure; perovskite; sintering

 

REFERENCES

Abd.Rahman, H. & Yacob, D. 2008. Effect of Double Sintering on the Properties of Porous Ceramic. https://www.researchgate.net/publication/277798322_Effect_of_double_sintering_on_the_properties_of_porous_ceramic

Abdul Rahman, N.F., Yusop, U.A., Lowrance, Y.N., Abd. Rahman, H. Azmi, M.A., Mahzan, S. & Ismail, A. 2022. Formulation and characterisation of LSCF/YSZ-SDC and LSCF/YSZ-SDCC dual composite cathodes for intermediate- temperature solid oxide fuel cell. Malaysian Journal of Analytical Sciences 26(3): 600-612.

Abd Aziz, A.J., Baharuddin, N.A., Somalu, M.R. & Muchtar, A. 2020. Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications. Ceramics International 46(15): 23314-23325.

Abdul Samat, A., Rao Somalu, M., Muchtar, A., Akidah Baharuddin, N. & Osman, N. 2019. Optimisation of screen-printed La0.6Sr0.4CoO3-δ cathode film for intermediate temperature proton-conducting solid oxide fuel cell application. IOP Conference Series: Earth and Environmental Science 268(1): 012137.

Aydın, B., Pamir, T., Baltaci, A., Orman, M.N. & Turk, T. 2015. Effect of storage solutions on microhardness of crown enamel and dentin. European Journal of Dentistry 9(2): 262-266.

Azreen Junaida Abd Aziz, Nurul Akidah Baharuddin, Mahendra Rao Somalu & Andanastuti Muchar. 2022. Layering optimization of the SrFe0.9Ti0.1O3−δ–Ce0.8Sm0.2O1.9 composite cathode. Molecules 27(8): 2549.

Baharuddin, N.A., Muchtar, A. & Somalu, M.R. 2017a. Preparation of SrFe0.5Ti0.5O3−δ perovskite-structured ceramic using the glycine-nitrate combustion technique. Materials Letters 194: 197-201.

Baharuddin, N.A., Muchtar, A. & Somalu, M.R. 2017b. Short review on cobalt-free cathodes for solid oxide fuel cells. International Journal of Hydrogen Energy 42: 9149-9155.

Baharuddin, N.A., Muchtar, A., Somalu, M.R., Kalib, N.S. & Raduwan, N.F. 2019. Synthesis and characterization of cobalt-free SrFe0·8Ti0·2O3-δ cathode powders synthesized through combustion method for solid oxide fuel cells. International Journal of Hydrogen Energy 44(58): 30682-30691.

Baharuddin, N.A., Somalu, M.R., Anwar, M., Ali, M., Abdul, S., Abdul, K. & Joelle, H. 2018. Effects of sintering temperature on the structural and electrochemical properties of SrFe0.5Ti0.5O3-d perovskite cathode. International Journal of Applied Ceramic Technology 15: 338-348.

Baharuddin, N.A., Muchtar, A., Rao Somalu, M., Sulong, A.B. & Abdullah, H. 2016. Pengaruh suhu sinter terhadap prestasi elektrokimia katod komposit sel bahan. Sains Malaysiana 45(3): 459-465.

Bandopadhyay, S. & Nagabhushana, N. 2003. Crack Growth Analysis of Solid Oxide Fuel cell Electrolytes. United States. https://doi.org/10.2172/822680

Billemar, J. 2014. How anode porosity affects the performance of a solid oxide fuel cell. Chalmers University of Technology, Goteborg, Sweden (Unpublished).

Chen, X., Wang, J., Liang, Q., Sun, X., Zhu, X., Zhou, D. & Meng, J. 2020. Pr2NiO4-Pr0.2Ce0·8O1.9 composite cathode as a potential cathode material for intermediate temperature solid oxide fuel cells. Solid State Sciences 100: 106108.

De Jonghe, L.C. & Rahaman, M.N. 2003. 4.1 Sintering of ceramics. Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties 1-2: 187-264.

Fan, X., Case, E.D., Yang, Q. & Nicholas, J.D. 2013. Room temperature hardness of gadolinia-doped ceria as a function of porosity. Journal of Materials Science 48(20): 6977-6985.

Flura, A., Nicollet, C., Fourcade, S., Vibhu, V., Rougier, A., Bassat, J.M. & Grenier, J.C. 2015. Identification and modelling of the oxygen gas diffusion impedance in SOFC porous electrodes: Application to Pr2NiO4+δ. Electrochimica Acta 174: 1030-1040.

He, W., Zou, J., Wang, B., Vilayurganapathy, S., Zhou, M., Lin, X., Zhang, K.H.L., Lin, J., Xu, P. & Dickerson, J.H. 2013. Gas transport in porous electrodes of solid oxide fuel cells: A review on diffusion and diffusivity measurement. Journal of Power Sources 237: 64-73.

Lee, W.E. 1996. Ceramic processing and sintering. International Materials Reviews 41(1): 36-37.

Mahato, N., Sharma, S., Keshri, A.K., Simpson, A., Agarwal, A. & Balani, K. 2013. Nanomechanical properties and thermal conductivity estimation of plasma-sprayed, solid-oxide fuel cell components: Ceria-doped, yttria-stabilized zirconia electrolyte. The Journal of The Minerals, Metals & Materials Society 65(6): 749-762.

Mangalaraja, R.V., Ananthakumar, S., Schachtsiek, A., López, M., Camurri, C.P. & Avila, R.E. 2010. Synthesis and mechanical properties of low temperature sintered, Sm3+ doped nanoceria electrolyte membranes for IT-SOFC applications. Materials Science and Engineering: A 527(16-17): 3645-3650.

Nurhayati, S., Syarif, D.G. & Setiawan, A. 2013. Pengaruh suhu sinter terhadap karakteristik keramik calsia stabilized zirconia dengan penambahan natrium karbonat untuk elektrolit padat. Indonesian Journal of Materials Science 14(2): 99-102.

Rahaman, M.N. 2013. Sintering of Ceramics. 1st ed. Boca Raton: CRC Press.

Ramadhani, F., Hussain, M.A., Mokhlis, H. & Hajimolana, S. 2017. Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey. Renewable and Sustainable Energy Reviews 76: 460-484.

Shaikh, S.P.S., Somalu, M.R. & Muchtar, A. 2016. Nanostructured Cu-CGO anodes fabricated using a microwave-assisted glycine-nitrate process. Journal of Physics and Chemistry of Solids 98: 91-99.

Shamsudin, Z., Mesri, M., Hasan, R., Mustafa, Z., Mohamad Juoi, J., Kejuruteraan Pembuatan, F. & Kejuruteraan Mekanikal, F. 2020. Effect of sintering temperature on physical properties of sintered green glass ceramic composite (GCC). Proceedings of Mechanical Engineering Research Day 2020. pp. 89-91.

Tahir, N.N.M., Baharuddin, N.A., Samat, A.A., Osman, N. & Somalu, M.R. 2021. A review on cathode materials for conventional and proton-conducting solid oxide fuel cells. Journal of Alloys and Compounds 894: 162458.

Tang, Q. & Gong, J. 2013. Effect of porosity on the microhardness testing of brittle ceramics: A case study on the system of NiO–ZrO2. Ceramics International 39(8): 8751-8759.

Tekeli, S. & Gürü, M. 2007. Indentation fracture toughness and hardness of solid oxide fuel cell electrolyte material. Key Engineering Materials 336-338: 2418-2421.

Toby, B.H. 2006. R factors in Rietveld analysis: How good is good enough? Powder Diffraction 21(1): 67-70.

Wincewicz, K.C. & Cooper, J.S. 2005. Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources 140(2): 280-296.

Yu, X., Fan, J. & Xue, L. 2014. Performance optimization of SrFe0.95Ti0.05O3-δ cathode for intermediate temperature SOFC. Ceramics International 40(8): 13627-13634.

Yuan, X., Qu, X., Yin, H., Feng, Z., Tang, M., Yan, Z. & Tan, Z. 2021. Effects of sintering temperature on densification, microstructure and mechanical properties of al-based alloy by high-velocity compaction. Metals 11(2): 218.

 

*Corresponding author; email: akidah@ukm.edu.my

 

 

 

 

 

 

previous