Sains Malaysiana 52(5)(2023): 1567-1579

http://doi.org/10.17576/jsm-2023-5205-18

 

Fabrication of Aromatic Polyimide Films Derived from Diisocyanate with Fluorinated Dianhydride

(Pembuatan Filem Polimida Aromatik Terhasil daripada Diisosianat dengan Dianhidrida Berfluorinat)

 

NAJAA MUSTAFFA1, TATSUO KANEKO2, KENJI TAKADA2, SUMANT DWIVEDI3 & NADHRATUN NAIIM MOBARAK1,*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Energy and Environment Area, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
3
Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark

 

Received: 27 December 2022/Accepted: 5 April 2023

 

Abstract

The range of available structure combinations to synthesize polyimide (PI) makes it technically possible to have various universal methods of producing PI film. The molecular design, in which monomers used to synthesize PI are carefully selected to meet specific application requirements as it influenced the properties of PI films. This study aimed to outline the approach for film fabrication through the casting of highly organo-soluble polyimide derived from 4,4’-methylene diphenyl diisocyanate (MDI) with 4,4’-(hexafluoroisopropylidene) diphtalic anhydride (6FDA) in different heating treatments. The solution drop amount was tested in order to control the films colour uniformity. A flexible and less crystalline MDI-6FDA film with an average thickness of 93 𝜇m was successfully developed with a tensile strength of up to 57 MPa and an elongation at break of 5%. The resulting MDI-6FDA film also demonstrated good optical transparency (T500 = 69%) with a cut-off wavelength at 371 nm and high thermal resistance (T5 = 574 ℃) with a Tg temperature of up to 238 ℃. The obtained film also shows good chemical resistance in methanol, ethanol, isopropanol, and tetrahydrofuran solvents. These outcomes serve as a guideline for the fabrication of polyimide films specifically derived from diisocyanate and dianhydride, with the potential advantages to be used in optical applications.

 

Keywords: Diisocyanate; flexible films; optical transparency; polyimide; tensile strength

 

Abstrak

Kepelbagaian gabungan struktur yang tersedia untuk mensintesis poliimida secara teknikalnya telah mewujudkan kaedah yang pelbagai untuk menghasilkan filem PI. Reka bentuk molekul yang melibatkan pemilihan monomer yang digunakan dalam penyediaan PI dipilih dengan teliti, bagi memenuhi keperluan aplikasi tertentu kerana ia boleh mempengaruhi sifat filem PI. Kajian ini bertujuan untuk menggariskan pendekatan bagi fabrikasi filem melalui penuangan poliimida organo-larut yang diperoleh daripada 4,4'-metilena difenil diisosianat (MDI) dengan 4,4'-(heksafluoroisopropilidena) diftalik anhidrida (6FDA) dalam rawatan pemanasan berbeza. Jumlah titisan larutan telah diuji bagi mengawal keseragaman warna filem. Filem MDI-6FDA yang fleksibel dan kurang hablur dengan purata ketebalan 93 𝜇m berjaya dibangunkan dengan kekuatan tegangan sehingga 57 MPa dan pemanjangan memutus pada 5%. Filem MDI-6FDA yang terhasil juga menunjukkan kelutsinaran optik yang baik (T500 = 69%) dengan panjang gelombang terpenggal pada 371 nm dan ketahanan terma yang tinggi (T5= 574 ℃) dengan suhu Tg sehingga 238 ℃. Filem yang dihasilkan juga menunjukkan ketahanan kimia yang baik dalam pelarut metanol, etanol, isopropanol dan tetrahidrofuran. Keputusan ini berfungsi sebagai garis panduan dalam fabrikasi filem poliimida khususnya daripada diisosianat dan dianhidrida dengan kelebihan potensi untuk digunakan di dalam aplikasi optik.

 

Kata kunci: Diisosianat; filem fleksibel; kekuatan tegangan; kelutsinaran cahaya; poliimida

 

REFERENCES

Alvino, W.M. & Edelman, L.E. 1978. Polyimides from diisocyanates, dianhydrides, and their dialkyl esters. Journal of Applied Polymer Science 22(7): 1983-1990.

Amutha, N., Tharakan, S.A. & Sarojadevi, M. 2015. Synthesis and characterization of new soluble polyimides based on pyridine unit with flexible linkages. High Performance Polymers 27(8): 979-989.

An, H., Xue, B., Li, D., Li, H., Meng, Q., Guo, L. & Chen, L. 2006. Environmentally friendly LiI/ethanol based gel electrolyte for dye-sensitized solar cells. Electrochemistry Communications 8(1): 170-172.

Ando, S., Matsuura, T. & Sasaki, S. 1997. Coloration of aromatic polyimides and electronic properties of their source materials. Polymer Journal 29(1): 69-76.

Barsema, J.N., Klijnstra, S.D., Balster, J.H., Van der vegt, N.F.A., Koops, G.H. & Wessling, M. 2004. Intermediate polymer to carbon gas separation membranes based on Matrimid PI. Journal of Membrane Science 238(1-2): 93-102.

Cao, L., Zhang, M., Niu, H., Chang, J., Liu, W., Yang, H., Cao, W. & Wu, D. 2016. Structural relationship between random copolyimides and their carbon fibers. Journal of Materials Science 52(4): 1883-1897.

Deng, B., Zhang, S., Liu, C., Li, W., Zhang, X., Wei, H. & Gong, C. 2018. Synthesis and properties of soluble aromatic polyimides from novel 4,5-diazafluorene-containing dianhydride. RSC Advances 8(1): 194-205.

Ghosh, A., Mistri, E.A. & Banerjee, S. 2015. Fluorinated polyimides: Synthesis, properties, and applications. Handbook of Specialty Fluorinated Polymers. pp. 97-185.

Hasegawa, M., Fujii, M. & Wada, Y. 2018. Approaches to improve the film ductility of colorless cycloaliphatic polyimides. Polymers for Advanced Technologies 29(2): 921-933.

Hasegawa, M. & Horie, K. 2001. Photophysics, photochemistry, and optical properties of polyimides. Progress in Polymer Science 26(2): 259-335.

Hsiao, S.H. & Chen, Y.J. 2002. Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. European Polymer Journal 38(4): 815-828.

Hsiao, S.H. & Lin, K.H. 2005. Polyimides derived from novel asymmetric ether diamine. Journal of Polymer Science Part A: Polymer Chemistry 43(2): 331-341.

Hu, M., Chen, H., Wang, M., Liu, G., Chen, C., Qian, G. & Yu, Y. 2021. Novel low‐dielectric constant and soluble polyimides from diamines containing fluorene and pyridine unit. Journal of Polymer Science 59(4): 329-339.

Huang, X., Li, H., Liu, C. & Wei, C. 2019. Design and synthesis of high heat-resistant, soluble, and hydrophobic fluorinated polyimides containing pyridine and trifluoromethylthiophenyl units. High Performance Polymers 31(1): 107-115.

Huang, X., Chen, B., Mei, M., Li, H., Liu, C. & Wei, C. 2017. Synthesis and characterization of organosoluble, thermal stable and hydrophobic polyimides derived from 4-(4-(1-pyrrolidinyl)phenyl)-2,6-bis(4-(4-aminophenoxy)phenyl)pyridine. Polymers 9(10): 1-13.

Huo, H., Mo, S., Sun, H., Yang, S. & Fan, L. 2012. Preparation and properties of molecular-weight-controlled polyimide adhesive film. e-Polymers 12(1): 1-18.

Hyde, L.J. & Smith, R.M. 1995. Bearing-grade thermoplastic polyimides in automotive tribological applications. (No. 950190) SAE Technical Paper pp. 1-11.

Jang, W., Shin, D., Choi, S., Park, S. & Han, H. 2007. Effects of internal linkage groups of fluorinated diamine on the optical and dielectric properties of polyimide thin films. Polymer 48(7): 2130-2143.

Jiang, H., Zhang, M. & Adhikari, B. 2013. Fruit and vegetable powders. Handbook of Food Powders. Elsevier. pp. 532-552.

Kaba, M., Romero, R.E., Essamri, A. & Mas, A. 2005. Synthesis and characterization of fluorinated copolyetherimides with CH2C6F13 side chains based on the ULTEMTM structure. Journal of Fluorine Chemistry 126(11-12): 1476-1486.

Kambezidis, H.D. 2012. The solar resource. Comprehensive Renewable Energy 3: 27-84.

Li, T.L. & Hsu, S.L.C. 2007. Preparation and properties of a high temperature, flexible and colorless ITO coated polyimide substrate. European Polymer Journal 43(8): 3368-3373.

Liaw, D.J., Huang, C.C. & Chen, W.H. 2006. Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based on noncoplanar 2,2′-dimethyl-4,4′-biphenylene units. Polymer 47(7): 2337-2348.

Liaw, D.J., Wang, K.L., Huang, Y.C., Lee, K.R., Lai, J.Y. & Ha, C.S. 2012. Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science 37(7): 907-974.

Lim, C.Y., Park, J.K., Kim, Y.H. & Han, J.I. 2012. Mechanical and electrical stability indium-tin-oxide coated polymer substrates under continuous bending stress condition. Journal of International Council on Electrical Engineering 2(3): 237-241.

Liu, J., Zhang, Q., Xia, Q., Dong, J. & Xu, Q. 2012. Synthesis, characterization and properties of polyimides derived from a symmetrical diamine containing bis-benzimidazole rings. Polymer Degradation and Stability 97(6): 987-994.

Mustaffa, N., Kaneko, T., Takada, K., Dwivedi, S., Su’ait, M.S. & Mobarak, N.N. 2022. Synthesis and characterization of polyimides from diisocyanate with enhanced solubility and thermostability properties via direct low-temperature one-step polymerization in NMP solvent. Polymer Bulletin. pp. 1-17.

Ngamwonglumlert, L. & Devahastin, S. 2018. Microstructure and its relationship with quality and storage stability of dried foods. Food Microstructure and Its Relationship with Quality and Stability. Elsevier. pp. 139-159.

Peng, Y.Y., Dussan, D.D. & Narain, R. 2020. Thermal, mechanical, and electrical properties. Polymer Science and Nanotechnology. Elsevier. pp. 179-201.

Punathil, L. & Basak, T. 2016. Microwave processing of frozen and packaged food materials: Experimental. Reference Module in Food Science. Elsevier. pp. 1-28.

Qu, W., Ko, T.M., Vora, R.H. & Chung, T.S. 2001. Effect of polyimides with different ratios of para - to meta - analogous fluorinated diamines on relaxation process. Polymer 42(15): 6393-6401.

Reis, F.R. 2014. Introduction to low pressure processes. In Vacuum Drying for Extending Food Shelf-Life, edited by Reis, F.R. Springer. pp. 1-6.

Sadavarte, N.V., Halhalli, M.R., Avadhani, C.V. & Wadgaonkar, P.P. 2009. Synthesis and characterization of new polyimides containing pendent pentadecyl chains. European Polymer Journal 45(2): 582-589.

Shen, Y., Feng, Z. & Zhang, H. 2020. Study of indium tin oxide films deposited on colorless polyimide film by magnetron sputtering. Materials & Design 193: 1-7.

Shrivastava, A. 2018. Introduction to Plastics Engineering. Elsevier. pp. 1-16.

St Clair, A.K., St Clair, T.L. & Shevket, K.I. 1984. Synthesis and characterization of essentially colorless polyimide films. Journal of Polymer Material Science Engineering 51: 62-66.

Takekoshi, T. 1996. Synthesis of polyimides. In Polyimides: Fundamentals and Applications, edited by Ghosh, M. Boca Raton: CRC Press: pp. 7-48.

Tan, P.C., Ooi, B.S., Ahmad, A.L. & Low, S.C. 2017. Correlating the synthesis protocol of aromatic polyimide film with the properties of polyamic acid precursor. IOP Conference Series: Materials Science and Engineering 206: 1-11.

Tapaswi, P.K. & Ha, C.S. 2019. Recent trends on transparent colorless polyimides with balanced thermal and optical properties: Design and synthesis. Macromolecular Chemistry and Physics 220(3): 1-33.

Thiruvasagam, P., Saritha, B. & Hari, N. 2016. Poly(ether–imide)s with flexible linkages and kinks: Synthesis, processability, thermal stability, and dielectric studies. High Performance Polymers 28(6): 660-668.

Vivod, S.L., Meador, M.A.B., Pugh, C., Wilkosz, M., Calomino, K. & McCorkle, L. 2020. Toward improved optical transparency of polyimide aerogels. ACS Applied Materials & Interfaces 12(7): 8622-8633.

Wu, H.W., Li, H. & Liu, H.Z. 2012. Synthesis and properties of a high-molecular-weight polyimide based on 4, 4’-(hexafluoroisopropylidene) diphthalic anhydride. Advanced Materials Research 550-553: 742-746.

Xue, B.F., Wang, H.X., Hu, Y.S., Li, H., Wang, Z.X., Meng, Q.B., Huang, X.J., Sato, O., Chen, L.Q. & Fujishima, A. 2004. An alternative ionic liquid based electrolyte for dye-sensitized solar cells. Photochemical & Photobiological Sciences 3(10): 918-919.

Yi, C., Li, W., Shi, S., He, K., Ma, P., Chen, M. & Yang, C. 2020. High-temperature-resistant and colorless polyimide: Preparations, properties, and applications. Solar Energy 195: 340-354.

 

*Corresponding author; email: nadhratunnaiim@ukm.edu.my

 

 

 

 

 

previous