Sains Malaysiana 52(5)(2023):
1567-1579
http://doi.org/10.17576/jsm-2023-5205-18
Fabrication of
Aromatic Polyimide Films Derived from Diisocyanate with Fluorinated Dianhydride
(Pembuatan Filem Polimida Aromatik Terhasil daripada Diisosianat dengan
Dianhidrida Berfluorinat)
NAJAA MUSTAFFA1, TATSUO KANEKO2,
KENJI TAKADA2, SUMANT DWIVEDI3 & NADHRATUN NAIIM
MOBARAK1,*
1Department of Chemical Sciences, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Energy and Environment Area, Graduate School of Advanced Science
and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
3Department of
Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
Received:
27 December 2022/Accepted: 5 April 2023
Abstract
The range of available structure combinations to
synthesize polyimide (PI) makes it technically possible to have various
universal methods of producing PI film. The molecular
design, in which monomers used to synthesize PI are carefully selected to meet
specific application requirements as it influenced the properties of PI films.
This study aimed to outline the approach for film fabrication through
the casting of highly organo-soluble polyimide
derived from 4,4’-methylene diphenyl diisocyanate (MDI) with 4,4’-(hexafluoroisopropylidene) diphtalic anhydride (6FDA) in different heating treatments.
The solution drop amount was tested in order to control the films colour
uniformity. A flexible and less crystalline MDI-6FDA film with an average thickness
of 93 𝜇m was successfully
developed with a tensile strength of up to 57 MPa and an elongation at break of
5%. The resulting MDI-6FDA film also demonstrated good optical transparency (T500 = 69%) with a cut-off wavelength at 371 nm and high thermal resistance (T5 = 574 ℃) with a Tg temperature of up to 238 ℃. The obtained film also shows good chemical
resistance in methanol, ethanol, isopropanol, and tetrahydrofuran solvents. These outcomes serve as a guideline for the
fabrication of polyimide films specifically derived from diisocyanate and dianhydride, with the potential advantages to be
used in optical applications.
Keywords: Diisocyanate; flexible films; optical
transparency; polyimide; tensile strength
Abstrak
Kepelbagaian
gabungan struktur yang tersedia untuk mensintesis poliimida secara teknikalnya
telah mewujudkan kaedah yang pelbagai untuk menghasilkan filem PI. Reka bentuk
molekul yang melibatkan pemilihan monomer yang digunakan dalam penyediaan PI
dipilih dengan teliti, bagi memenuhi keperluan aplikasi tertentu kerana ia
boleh mempengaruhi sifat filem PI. Kajian ini bertujuan untuk menggariskan
pendekatan bagi fabrikasi filem melalui penuangan poliimida organo-larut yang
diperoleh daripada 4,4'-metilena difenil diisosianat (MDI) dengan
4,4'-(heksafluoroisopropilidena) diftalik anhidrida (6FDA) dalam rawatan
pemanasan berbeza. Jumlah titisan larutan telah diuji bagi mengawal keseragaman
warna filem. Filem MDI-6FDA yang fleksibel dan kurang hablur dengan purata
ketebalan 93 𝜇m berjaya
dibangunkan dengan kekuatan tegangan sehingga 57 MPa dan pemanjangan memutus
pada 5%. Filem MDI-6FDA yang terhasil juga menunjukkan kelutsinaran optik yang
baik (T500 = 69%) dengan panjang gelombang terpenggal pada 371 nm
dan ketahanan terma yang tinggi (T5= 574 ℃) dengan suhu Tg sehingga 238 ℃. Filem yang dihasilkan juga
menunjukkan ketahanan kimia yang baik dalam pelarut metanol, etanol,
isopropanol dan tetrahidrofuran. Keputusan ini berfungsi sebagai garis panduan
dalam fabrikasi filem poliimida khususnya daripada diisosianat dan dianhidrida
dengan kelebihan potensi untuk digunakan di dalam aplikasi optik.
Kata kunci: Diisosianat; filem fleksibel; kekuatan tegangan; kelutsinaran
cahaya; poliimida
REFERENCES
Alvino,
W.M. & Edelman, L.E. 1978. Polyimides from diisocyanates, dianhydrides, and
their dialkyl esters. Journal of Applied Polymer Science 22(7):
1983-1990.
Amutha,
N., Tharakan, S.A. & Sarojadevi, M. 2015. Synthesis and characterization of
new soluble polyimides based on pyridine unit with flexible linkages. High
Performance Polymers 27(8): 979-989.
An,
H., Xue, B., Li, D., Li, H., Meng, Q., Guo, L. & Chen, L. 2006.
Environmentally friendly LiI/ethanol based gel electrolyte for dye-sensitized
solar cells. Electrochemistry Communications 8(1): 170-172.
Ando,
S., Matsuura, T. & Sasaki, S. 1997. Coloration of aromatic polyimides and
electronic properties of their source materials. Polymer Journal 29(1):
69-76.
Barsema,
J.N., Klijnstra, S.D., Balster, J.H., Van der vegt, N.F.A., Koops, G.H. &
Wessling, M. 2004. Intermediate polymer to carbon gas separation membranes
based on Matrimid PI. Journal of Membrane Science 238(1-2): 93-102.
Cao,
L., Zhang, M., Niu, H., Chang, J., Liu, W., Yang, H., Cao, W. & Wu, D. 2016.
Structural relationship between random copolyimides and their carbon fibers. Journal
of Materials Science 52(4): 1883-1897.
Deng,
B., Zhang, S., Liu, C., Li, W., Zhang, X., Wei, H. & Gong, C. 2018.
Synthesis and properties of soluble aromatic polyimides from novel
4,5-diazafluorene-containing dianhydride. RSC Advances 8(1): 194-205.
Ghosh,
A., Mistri, E.A. & Banerjee, S. 2015. Fluorinated polyimides: Synthesis,
properties, and applications. Handbook of Specialty Fluorinated Polymers.
pp. 97-185.
Hasegawa,
M., Fujii, M. & Wada, Y. 2018. Approaches to improve the film ductility of
colorless cycloaliphatic polyimides. Polymers for Advanced Technologies 29(2): 921-933.
Hasegawa,
M. & Horie, K. 2001. Photophysics, photochemistry, and optical properties
of polyimides. Progress in Polymer Science 26(2): 259-335.
Hsiao,
S.H. & Chen, Y.J. 2002. Structure–property study of polyimides derived from
PMDA and BPDA dianhydrides with structurally different diamines. European
Polymer Journal 38(4): 815-828.
Hsiao,
S.H. & Lin, K.H. 2005. Polyimides derived from novel asymmetric ether
diamine. Journal of Polymer Science Part A: Polymer Chemistry 43(2):
331-341.
Hu,
M., Chen, H., Wang, M., Liu, G., Chen, C., Qian, G. & Yu, Y. 2021. Novel
low‐dielectric constant and soluble polyimides from diamines containing
fluorene and pyridine unit. Journal of Polymer Science 59(4): 329-339.
Huang,
X., Li, H., Liu, C. & Wei, C. 2019. Design and synthesis of high
heat-resistant, soluble, and hydrophobic fluorinated polyimides containing pyridine
and trifluoromethylthiophenyl units. High Performance Polymers 31(1):
107-115.
Huang,
X., Chen, B., Mei, M., Li, H., Liu, C. & Wei, C. 2017. Synthesis and
characterization of organosoluble, thermal stable and hydrophobic polyimides
derived from 4-(4-(1-pyrrolidinyl)phenyl)-2,6-bis(4-(4-aminophenoxy)phenyl)pyridine. Polymers 9(10): 1-13.
Huo,
H., Mo, S., Sun, H., Yang, S. & Fan, L. 2012. Preparation and properties of
molecular-weight-controlled polyimide adhesive film. e-Polymers 12(1):
1-18.
Hyde,
L.J. & Smith, R.M. 1995. Bearing-grade thermoplastic polyimides in
automotive tribological applications. (No. 950190) SAE Technical Paper pp. 1-11.
Jang,
W., Shin, D., Choi, S., Park, S. & Han, H. 2007. Effects of internal
linkage groups of fluorinated diamine on the optical and dielectric properties
of polyimide thin films. Polymer 48(7): 2130-2143.
Jiang,
H., Zhang, M. & Adhikari, B. 2013. Fruit and vegetable powders. Handbook
of Food Powders. Elsevier. pp. 532-552.
Kaba,
M., Romero, R.E., Essamri, A. & Mas, A. 2005. Synthesis and
characterization of fluorinated copolyetherimides with CH2C6F13 side chains based on the ULTEMTM structure. Journal of Fluorine
Chemistry 126(11-12): 1476-1486.
Kambezidis,
H.D. 2012. The solar resource. Comprehensive Renewable Energy 3: 27-84.
Li,
T.L. & Hsu, S.L.C. 2007. Preparation and properties of a high temperature,
flexible and colorless ITO coated polyimide substrate. European Polymer
Journal 43(8): 3368-3373.
Liaw,
D.J., Huang, C.C. & Chen, W.H. 2006. Color lightness and highly
organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based
on noncoplanar 2,2′-dimethyl-4,4′-biphenylene units. Polymer 47(7): 2337-2348.
Liaw,
D.J., Wang, K.L., Huang, Y.C., Lee, K.R., Lai, J.Y. & Ha, C.S. 2012.
Advanced polyimide materials: Syntheses, physical properties and applications. Progress
in Polymer Science 37(7): 907-974.
Lim,
C.Y., Park, J.K., Kim, Y.H. & Han, J.I. 2012. Mechanical and electrical
stability indium-tin-oxide coated polymer substrates under continuous bending
stress condition. Journal of International Council on Electrical Engineering 2(3): 237-241.
Liu,
J., Zhang, Q., Xia, Q., Dong, J. & Xu, Q. 2012. Synthesis, characterization
and properties of polyimides derived from a symmetrical diamine containing
bis-benzimidazole rings. Polymer Degradation and Stability 97(6):
987-994.
Mustaffa,
N., Kaneko, T., Takada, K., Dwivedi, S., Su’ait, M.S. & Mobarak, N.N. 2022.
Synthesis and characterization of polyimides from diisocyanate with enhanced
solubility and thermostability properties via direct low-temperature one-step
polymerization in NMP solvent. Polymer Bulletin. pp. 1-17.
Ngamwonglumlert,
L. & Devahastin, S. 2018. Microstructure and its relationship with quality
and storage stability of dried foods. Food Microstructure and Its
Relationship with Quality and Stability. Elsevier. pp. 139-159.
Peng,
Y.Y., Dussan, D.D. & Narain, R. 2020. Thermal, mechanical, and electrical
properties. Polymer Science and Nanotechnology. Elsevier. pp. 179-201.
Punathil,
L. & Basak, T. 2016. Microwave processing of frozen and packaged food
materials: Experimental. Reference Module in Food Science. Elsevier. pp.
1-28.
Qu,
W., Ko, T.M., Vora, R.H. & Chung, T.S. 2001. Effect of polyimides with
different ratios of para - to meta - analogous fluorinated diamines on
relaxation process. Polymer 42(15): 6393-6401.
Reis,
F.R. 2014. Introduction to low pressure processes. In Vacuum Drying for Extending Food Shelf-Life, edited by Reis, F.R.
Springer. pp. 1-6.
Sadavarte,
N.V., Halhalli, M.R., Avadhani, C.V. & Wadgaonkar, P.P. 2009. Synthesis and
characterization of new polyimides containing pendent pentadecyl chains. European
Polymer Journal 45(2): 582-589.
Shen,
Y., Feng, Z. & Zhang, H. 2020. Study of indium tin oxide films deposited on
colorless polyimide film by magnetron sputtering. Materials & Design 193: 1-7.
Shrivastava,
A. 2018. Introduction to Plastics
Engineering. Elsevier. pp. 1-16.
St
Clair, A.K., St Clair, T.L. & Shevket, K.I. 1984. Synthesis and characterization
of essentially colorless polyimide films. Journal of Polymer Material
Science Engineering 51: 62-66.
Takekoshi,
T. 1996. Synthesis of polyimides. In Polyimides: Fundamentals and
Applications, edited by Ghosh, M. Boca Raton: CRC Press: pp. 7-48.
Tan,
P.C., Ooi, B.S., Ahmad, A.L. & Low, S.C. 2017. Correlating the synthesis
protocol of aromatic polyimide film with the properties of polyamic acid
precursor. IOP Conference Series: Materials Science and Engineering 206:
1-11.
Tapaswi,
P.K. & Ha, C.S. 2019. Recent trends on transparent colorless polyimides
with balanced thermal and optical properties: Design and synthesis. Macromolecular
Chemistry and Physics 220(3): 1-33.
Thiruvasagam,
P., Saritha, B. & Hari, N. 2016. Poly(ether–imide)s with flexible linkages
and kinks: Synthesis, processability, thermal stability, and dielectric
studies. High Performance Polymers 28(6): 660-668.
Vivod,
S.L., Meador, M.A.B., Pugh, C., Wilkosz, M., Calomino, K. & McCorkle, L.
2020. Toward improved optical transparency of polyimide aerogels. ACS
Applied Materials & Interfaces 12(7): 8622-8633.
Wu,
H.W., Li, H. & Liu, H.Z. 2012. Synthesis and properties of a
high-molecular-weight polyimide based on 4, 4’-(hexafluoroisopropylidene)
diphthalic anhydride. Advanced Materials Research 550-553: 742-746.
Xue,
B.F., Wang, H.X., Hu, Y.S., Li, H., Wang, Z.X., Meng, Q.B., Huang, X.J., Sato,
O., Chen, L.Q. & Fujishima, A. 2004. An alternative ionic liquid based
electrolyte for dye-sensitized solar cells. Photochemical & Photobiological
Sciences 3(10): 918-919.
Yi,
C., Li, W., Shi, S., He, K., Ma, P., Chen, M. & Yang, C. 2020.
High-temperature-resistant and colorless polyimide: Preparations, properties,
and applications. Solar Energy 195: 340-354.
*Corresponding author; email:
nadhratunnaiim@ukm.edu.my
|