Sains Ma1aysiana 26(3&4): 109-117 (1997) Sains Fizis dan Gunaan/
Physical and Applied Sciences
Characterisation of Aciplex Membrane by X-ray
Photoelectron Spectroscopy
Abu Bakar Mohamad, Wan Ramli Wan Daud
Amir Kadhum, Fathi Messaud
Department of Chemical and Process Engineering
Faculty of Engineering, Universiti Kebangsaan Malaysia
43600 UKM Bangi Selangor D.E. MALAYSIA
Mohd. Ambar Yarmo
Department of Chemistry
Faculty of Physical and Applied Sciences
43600 UKM Bangi Selangor D.E. MALAYSIA
ABSTRACT
Chemical structure of treated and untreated Aciplex membrane has been studied by X-ray Photoelectron Spectroscopy (XPS). Survey spectra showed that both membrane surfaces consist of Fluorine, Carbon, Oxygen, Sulphur and trace of Titanium. Binding energies for the elements are (C1s at 290.6 eV, F1s at 687.5 eV, O1s at 531.3 eV, S2P at 168.1 eV and Ti2P at 454.4 eV). Analysis of narrow scan XPS-spectra of each element demonstrate the presence of (-CF, -CF2, CF3, C-O-C and SO-3) groups, which are in agreement with the structural formula as disclosed by the manufacturer. There is no significant change in chemical states of untreated and treated membrane, which reflect its stability to treatment conditions.
ABSTRAK
Struktur kimia Aciplex membran yang sudah dibersihkan dan yang belum dibersihkan telah dikaji menggunakan Spektroskopi Fotoelektron Sinaran-X (XPS). Spektra yang telah ditinjau menunjukkan bahawa kedua-dua permukaan membran mengandungi Florin, Karbon, Oksigen, Sulfur dan sedikit Titanium. Tenaga ikatan bagi unsur-unsur tersebut adalah (C1s pada 290.6 eV, F1s pada 687.5 eV. O1s pada 531.3 eV, S2P pada 168.2 eV dan Ti2P pada 454.4 eV). Analisis imbasan kecil spektra-xps bagi setiap unsur menunjukkan kehadiran kilmpulan (-CF, - CF2, CF3, C-O-C dan SO-3) yang bertepatan dengan formula struktur dari pihak pembekal. Tiada terdapat perubahan nyata berhubung dengan keadaan kimia membran yang sudah dibersihkan dan yang belum dibersihkan yang menggambarkan kestabilannya terhadap keadaan pembersihan.
RUJUKAN/REFERENCES
Bergner D. 1982. Membranes cells for chlroro-alkali electrolysis. J. Applied Electrochemistry 12: 631-644.
Besso E. & Eisenberg, A. 1982. Properties and structure of ionomers and ionomeric membranes. Proc. Symp. on membranes and ionic and electronic conducting polymers, NJ. USA.
Eisenberg, A. & Yeager, H. L. 1982. Perfluorinated ionomer membrane, ACS Symp. Series 180, USA.
Elving, P. J., Winefordner, J. D. & Kolthoff I. M. 1982. Chemical analysis, 63. New York: John Wiley & Sons.
Hamel, N. N.1995. Monomeric and polymeric fluoroalkyl sulfonyl fluorides sulfonate salts and sulfonic acids for use as electrolytes and coating. PhD Thesis. Portland State University, USA.
Ivin, K. J. 1976. Structural studies of macromolecules by spectroscopic methods. New York: John Wiley & Sons, Ltd.
John F. M., Stickle W. F., Sobol D. E. & Bomben K. P. 1992. Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp. MN.
Klopffer, W. 1984. Introduction to polymer spectroscopy. Springer-Verlag
Scherer, G. G.. Killes E. & Grman, D. 1992. Radiation grafted membranes; some structural investigations in relation to their behaviour in ion-exchange membrane water electrolysis cells. Int. J. Hydrogen Energy 17 (2): 115-123.
Srinivisan, S., Velev, O. A., Parthasarathy, A., Manko, D. J. & Appleby, A. 1991.
High energy efficiency and high power density PEMFC. J. Power Sources 36: 299-320.
Steck, A. O., Sayadogo, O., Roberge, P.R. & Veziroglu, T.N. 1995. Membrane material in fuel cells. Proc. 1st Int. symp. on new materials for fuel cell systems, Montrea1.
Wakizoe, M., Veley, O. A. & Sriniyisan, S. 1995. Analysis of proton exchange membrance fuel cell performance with alternate membranes. J. Electrochimica Acta 40(3): 335-344.
|