Sains Malaysiana 30: 77-86 (2001) Pengajian Kuantitatif/
Quantitative Studies
A Fast Higher Order Poisson Solver
M. Othman, J. Suliman & A.R. Abdullah
Department of Communication Technology and Network
Universiti Putra Malaysia, 43400 UPM Serdang
Selangor D.E.,Malaysia
J. Suliman
School of Science & Technoogy
Universiti Malaysia Sabah
Kota Kinabalu, Sabah, Malaysia
A.R. Abdullah
Department of Industrial Computing
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E., Malaysia
ABSTRAK
Makalah membincangkan satu penghampiran putaran bertertib empat dengan menggunakan pendekatan separuh sapuan untuk menyelesaikan persamaan Poisson dua dimensi dikenali sebagai satu penyelesai Poisson bertertib tinggi terpantas. Penyelesai ini telah menunjukkan kepantasannya jika dibandingkan dengan penyelesai Poisson bertertib empat merujuk kepada Gupta (1984). Keputusan eksperimen daripada masalah ujian telah dimasukkan untuk menyokong dakwaan tersebut.
ABSTRACT
In this paper, we introduce a rotated fourth order approximation with the halfsweep approach for solving the two dimensional Poisson equation known as a faster higher order Poisson solver. The solver has been shown to be very much faster as compared to the standard fourth order Poisson solver due to Gupta (1984). The experimental results of the test problem were included to support our assertion.
RUJUKAN/REFERENCES
Abdullah, A.R. 1991. The Four Points Explicit Decoupled Group (EDG). Method: a Fast Poisson solver. Int. J. Comp. Math. 38: 61-70.
Collatz, L. 1960. The Numerical Treatment of Differential Equation, Berlin. Springer-Verlag.
Dahlquist, G. & Bjorck, A. 1974. Numerical Methods. New York: Prentice Hall.
Gupta, M.M. 1984. A fourth-order poisson solver. J. Comput. Phys. 55: 166-172.
Lynch, R.E. & Rice, J.R. 1978. The hoide method and its performance for solving elliptic partial differential equations. In Recent advances in numerical Analysis. C. de Boor et al. Eds. New York: Academics Press, 143-175.
Othman, M. & Abdullah, A.R. 1998. The halfsweeps multigrid method as a fast multigrid poisson solver. Int. J. Comp. Math. 69: 319-329.
Rosser, J.B. 1975. Nine points difference solution for poisson’s equation. Comp Math. Appl. 1: 351-360.
Yousif, W.S. & Evans, D.J. 1995. Explicit De-coupled Group literative methods and their parallel implementations. Parallel algorithms and Applications 7: 53-71.
Young, D.M. 1976. Iterative Solution of Large Linear System. London: Academic Press.
|