Sains Malaysiana 31: 87-91 (2002)                                                                                Sains Fizis dan Gunaan /

                                                                                                                                Physical and Applied Sciences

 

 

Temperature Sensitivity of Fibre Bragg Gratings Fabricated

in High Germania Boron Co-doped Optical Fibre

 

 

S.W. Harun, P. Poopalan & H. Ahmad

Physics Department, Faculty of Science

University Malaya

50603 Kuala Lumpur Malaysia

 

 

 

ABSTRACT

 

The Bragg wavelength drift in fibre Bragg gratings (FBGS) fabricated in high germania boron co-doped optical fibre with respect to temperature variation is studied. The FBG is subjected to temperature variation using an oven. The Bragg wavelength shift with temperature variation is mostly due to thermo­optic effects. The main constituent of the FBG fibre is silica and germanosilicate glass for which the wavelength increases with temperature. The experimental result shows that the thermal response for the FBG is about 0.010 nmoC, which is consistent with theoretical prediction.

 

 

ABSTRAK

 

Perubahan jarak gelombang Bragg dalam celahan Bragg gentian yang dicetak dalam gentian optik yang mengandungi germanium dan boron yang tinggi terhadap perubahan suhu telah dikaji. Celahan Bragg gentian ini telah dikenakan dengan perubahan suhu di dalam relau. Jarak gelombang Bragg berubah dengan suhu disebabkan oleh kesan termo-optik. Jarak gelombang ini bertambah dengan pertambahan suhu kerana bahan utama dalam celahan Bragg gentian terdiri daripada silika dan germanosilikat kaca. Keputusan ujikaji menunjukkan kadar perubahan jarak gelombang dengan suhu lebih kurang 0.010 nmoC dan nilai ini adalah sangat hampir dengan teori.

 

 

RUJUKAN/REFERENCES

 

Boumann, Seifert J., Nowak W. & Sauer M. 1996. Compact all-fiber add-drop multiplexer using fiber Bragg gratings. IEEE Photon. Tech. Lett. 8: 1331-1333.

Hill K.O., Bilodeau E, Malo B., Kitazawa T., Theriault S., D. C. Johnson D. C., Albert J. & Takiguchi K. 1994. Chirp in-fiber Bragg grating for compensation of optical fiber dispersion. Opt. Lett. 19: 1314-1316.

Kersey A. D. 1996. A review of recent developments in fiber optic sensor technology. Optic. Fiber Technol. 2: 291-317.

Meltz G. & Morey W. W. 1991. Bragg grating formation and germanosilicate fiber photosensitivity. In Proc. SPIE Photoinduced Self-Organization Effects in Opti­cal Fiber, E. Ouellette, Ed. 1516: 185-199.

Ghosh G. 1994. Temperature dispersion of refractive indexes in some silicate fiber glasses. IEEE Photon. Tech. Lett. 6(3).

Takahashi S. & Shibata S. 1979. Thermal variation of attenuation for optical fibers. J. Non-Crystalline Solids 30: 359-370.

Mazurin O. Y., Streltsina M. Y. & Shvaiko-Shavaikovskaya T. P. 1985. Handbook of Glass Properties. Elsevier.

Shima K., Himeno K., Sakai T., Okude S., Wada A. & Yamauchi R. J997. A novel temperature-insensitive long period fiber grating using a boron-codoped ­germanosilicate-core fiber. OFC'97 Tech. Digest. 347-348.

Lord S. M., Switzer G. W. & Krainak M. A. 1996. Using fiber gratings to stabilize laser diode wavelength under modulation for atmospheric lidar transmitters. Electron. Lett. 32: 561-563.

Wang L., Lin G.C. & Yang C.C. 1997. Thermal performance of a solder-coated optical fiber Bragg grating sensor. Proc. IEEE CLEO, Pacific Rim, 560, ThEE6.

 

 

 

sebelumnya