Sains Malaysiana 33(2):1-8 (2004) Sains Fizis dan Gunaan /
Physical and Applied Sciences
Pendopan Kimia Poli(4,4' -Difenilena Difenilvinilena
(Chemical Doping of Ply(4,4’-Diphenylene Diphenylvinylene)
Rusli Daik & Quek May Fung
Pusat Pengajian Sains Kimia dan Teknologi Makanan
Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E.Malaysia
ABSTRAK
Poli(4,4'-difenilena difenilvinilena) telah disintesis daripada 4,4'-dibenzoilbifenil menggunakan TiCl4 dan serbuk zink masing-masing sebagai mangkin dan agen penurun di dalam THF. 4,4'-Dibenzoilbijenil telah disediakan melalui tindak balas Friedel-Crafts daripada benzoilklorida dan bijenil sebagai bahan mula dan AlCl3 kontang sebagai mangkin. Analisis unsur, kromatogram GCMS, spektrum FTIR dan penentuan takat lebur menunjukkan sebatian 4,4' -dibenzoilbifenil telah berjaya diperolehi dengan ketulenan 100%. Polimer telah berjaya disintesis dengan pengumpulan semula bahan sebanyak 72%. Suhu peralihan kaca, Tg dan suhu penguraian terma, Td bagi polimer masing-masing adalah 196°C dan 465°C. Kromatografi penelapan gel menunjukkan polimer yang dihasilkan mempunyai jisim molekul purata nombor dan jisim molekul purata berat masing-masing adalah 7,400 g/mol dan 15,500 g/mol. Kekonduksian polimer asal adalah 8.3 x 10-11 Scm-1, manakala kekonduksian maksimum polimer terdop LiClO4 dan iodin masing-masing adalah 1.7 x 10-7 Scm-I (peningkatan sebanyak 2007 kali ganda) dan 5.5 x 10-9 Scm-1 (peningkatan sebanyak 66 kali ganda) dengan kandungan agen pendop optimum sebanyak 18. 75% dan 37.50%.
ABSTRACT
Poly(4,4'-diphenylene diphenylvinylene) was synthesised from 4,4' dibenzoylbiphenyl with TiCl4 and zinc dust as the catalyst and reducing agent respectively in THF. 4,4' -Dibenzoylbiphenyl was prepared via Friedel-Crafts reaction with benzoylchloride and biphenyl as starting materials. The catalyst used was anhydrous AlCl3 Elemental analysis, GCMS chromatogram, FTIR spectrum and melting point measurement indicated that 4,4'dibenzoylbiphenyl was obtained with 100% purity. The polymer was successfully obtained with mass recovery of 72%. Glass transition, Tg and degradation, temperature, Td found were 196°C and 465°C, respectively. Number average molecular weight and weight average molecular weight found were 7,400 g/mol and 15,500 g/mol as measured by using gel permeation chromatography. Conductivity of the pristine polymer was 8.3 x 10-11 Scm-I, whereas maximum conductivity found for LiCLO4 and iodine doped samples were 1.7 x 10-7 Scm-1 (2007 fold increase) and 5.5 x 10-9 Scm-1 (66 fold increase) with 18.75% and 37.50% of optimum doping contents respectively.
RUJUKAN/REFERENCES
Daik, R & Feast W.1. 2000. Synthesis and characterisation of poly(arylene vinylene)s. Journal of The Institute of Materials Malaysia 1: 31- 42.
Daik, R, Rosli, D., Khoo, G.H., & Feast, W.1. 2001. Synthesis and spectroscopic analysis of a few aromatic diketones. Buletin Kimia 16: 1 - 9.
Frommer, J.E., & Chance, RR 1989. Encyclopedia of Polymer Science and Engineering. New York: John Wiley and Sons.
Heeger, A.J., MacDiarmid, A.G., & Shirakawa, K. 2000. The Nobel Prize in Chemistry: Conductive Polymers. Sweden: The Royal Swedish Academy of Sciences.
Lee, C., Lee, Y.J.& Lee, H. 1997. Solution and solution-cast films of conducting polymers. Synthetic Metals 84: 149 -150.
Lenz, RW., Han, C.C., & Lux, M. 1989. Highly conducting, iodine-doped arylene vinylene copolymers with dialkoxyphenylene units. Polymer 30: 1041 - 1047.
Nalwa, H.S. 1997. Handbook of Organic Conductive Molecules and Polymers Vol Conductive Polymers: Synthesis and Electrical Properties. England: John Wiley and Sons.
Song, S.Y., Ahn, T., Shim, H.K., Song, LS., & Kim, W.H. 2001. Synthesis and electroluminescence properties of ortho-, meta- and para-linked polymers containing oxadiazole unit, Polymer 42: 4803 - 4811.
|