Sains Malaysiana 34( I ): 63-72 (2005)
Removal of Toxic Aliphatic Amines by Adsorption
using Commercial Activated Charcoal
(Penyingkiran Amina Alifalik Teknik dengan Serapan
menggunakan Arang Teraktif Komersial)
Y. Iqbal, N. Ahmad
Department of Chemistry
University of Peshawar, Peshawar, Pakistan
Ihsanullah
Nuclear Institute for Food & Agriculture (NIFA)
Tarnab, Peshawar, Pakistan
S.A. Khan
Pakistan Council of Scientific
& Industrial Research (PCSIR) Labs., Peshawar, Pakistan
M.Saleem
National Center of Excellence in Physical Chemistry
Univ. of Peshawar, Pakistan
ABSTRACT
The present study was to investigate the use of granular activated charcoal (GAC) as a potential material for removal of toxic aliphatic compounds by adsorption. Commercial granular charcoal was degassed at 105°C, 300°C and 800°C for a period of twenty-four hours, which was then used as an adsorbent for the adsorption of methylamine, dimethylamine and trimethylamine from their aqueous solutions at 25°C. The time dependence studies showed that four hours are the optimum time for the maximum adsorption of the alkylamines, irrespective of their nature and concentrations (0.005M & 0.01M). Adsorption was greater from higher concentration than lower concentration of adsorbate solution. Lower adsorption of alkylamines was observed when the charcoal was evacuated at high temperature. The adsorption sequence of alkylamines followed the order dimethylamine > trimethylamine > methylamine. The amount of adsorption using different adsorption isotherm, i.e. Freundlich and Langmuir were evaluated. L-type isotherms were also observed for the adsorption data. Further, the Langmuir and Freundlich isotherms were found applicable to the adsorption data and the values of the adsorption capacity i.e. "k" and monolayer adsorption capacity "b" were calculated and in agreement with the adsorption patterns.
Keyword: Activated carbon, Aliphatic Amine Absorption
ABSTRACT
Kajian dilakukan untuk melihat kegunaan arang teraktif granul sebagai bahan berpotensi untuk mengeluarkan sebatian alifatik toksik dengan jerapan. Arang granulat komersial dinyahgas pada 105°C, 300°C dan 800°C untukj angka masa 24 jam dan seterusnya digunakan sebagai penjerap bagi jerapan metilamina, dimetilamina dan trietilamina dari larutan akueus pada 25°C. Kajian kebergantungan masa menunjukkan bahawa masa optimum untuk jerapan maksimum alkil amina ialah 4 jam, tidak kita bentuk dan kepekatan (0.005M & 0.01 M). Pencapaian jerapan adalah lebih tinggi pada kepekatan tinggi dibandingkan dengan larutan jerap berkepekatan rendah. Jerapan rendah oleh alkilamina diperhatikan apabila arang dinyahgas pada suhu tinggi. Susunan jerapan alkilamina diperhatikan apabila arang dinyahgas pada suhu tinggi. Susunan jerapan alkilamina mengikut tertib dimetilamina > trimetilamina > metilamina. Amaun jerapan menggunakan isoterma jerapan berbeza, iaitu Freundlich dan Langmuir telah dinilai Isoterma jenis juga diperhatikan untuk data jerapan. Tambahan pula, isoterma Freundlich dan Langmuir didapati berguna untuk data jerapan dan nilai kapasiti jerapan, iaitu 'k' dan kapasiti jerapan lapisan mono dihitung dan didapati konsisten dengan corak jerapan.
Kata kunci: karbon teraktif, jerapan amina alifatik
REFERENCES/RUJUKAN
Bodecker, C. 1895. J. Landw 7: 48.
Brunauer, S., Deming, L.S., Deming, W.E. & Teller, E. 1940. A theory of the van der Waals adsorption of gases. Journal of the American Chemical Society 62: 1723-32.
Buczek, B., Swiatkowski, A. & Goworek, J. 1955. Adsorption from binary liquid mixtures on commercial activated carbon. Carbon 33(2): 129-34.
Chiang, Y., Chiang, P. & Chang, E-E. 1998. Evaluations of the physicochemical characterizations of activated carbons. Journal of Environmental Science and Health A33(7): 14371463.
Cooney, D.O., Nager, A. & Hines, A.L. 1983. Solvent regeneration of activated carbon. Water Research 17(4): 403-10.
Dobbs., R.A. & Cohen, J.M. 1980. Carbon adsorption for toxic organic, EPA 600/8-80-023. Municipal Environ. Lab., Cincinnati, Ohio, USA, 45268.
Foly, G. 1986. Charcoal making in developing countries. Tech. Report No. 5. 11th Edn. London.
Foster, D.S. 1967. Encyclopedia of Industrial Chemical Analysis, vol. 5. New York: Inter Sci. Pub.
Freundlich, H. 1926. Colloid and Capillary Chemistry, London: Hasseler, J.W. 1974. Activated carbon, New York: Chemical Pub. Co.
Hussain, R. & Mohammad, D. 1993. Densities of iron and aluminium poly methacrylate powders. Science International (Lahore) 5(3): 251.
Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40: 1361-1402.
Lin, C.C, & Liu, H.S. 2000. Adsorption in a Centrifugal Field: Basic Dye Adsorption by Activated Carbon. Industrial & Engineering Chemistry Research 39(1): 161-167.
Little, M. & Hills, FJ. 1972. Agric. Extension. Davis, USA: Univ. California.
Lupashku, T., Monahova, L. & Gonchar, Y. 1994. Adsorption properties of active carbons obtained from food industry byproducts. Revuee Roumaine de Chimie 39(8): 909-16.
McKay, G., Bino, M.J. & Altamemi, A.R. 1985. The adsorption of various pollutants from aqueous solutions on to activated carbon. Water Research 19(4): 491-5.
Othmer, K. 1963. Encyclopedia of chemical Technology, 2nd Edn; vol. 2. New York: Tnter-Science Pub.
Schmidt, J.L., Pimenov, A.Y., Lieberman, A.I. & Cheh, H.Y. 1997. Kinetics of adsorption with granular, powdered and fibrous activated carbon. Separation Science and Technology 32(13):2105-2114.
Tanju, K. Mehme, K. & James, E.K. 1999. Environ. Sci. Technol. 33: 3217.
Thompson, J.K., Krebs, J.J. & Resing, H.A., 1965. N.M.R relaxation times of benzene adsorbed on charcoal. Molecular rotation and diffusion. Journal of Chemical Physics 43(11):3853-65.
Uranowski, L.J. Tessmer, C.H. & Vidic, RD. 1998. The effect of surface metal oxides on activated carbon adsorption of phenolics. Water Research 32(6): 1841-1851.
Walter, G.C. & Robert, A.R 1973. Can. J. Chem. 51: 533.
Walter, RW. & Luthy, R.G. 1984. Environ. Sci. Technol., 18: 395.
Wiessner, A., Remmler, M., Kuschk, P. & Stottmeister, U. 1991 The treatment of deposited lignite pyrolysis wastewater b adsorption using activated carbon and activated coke. Colloia and Surfaces 139(1): 91-97.
Yousaf, I. Sultan, A. & Mohammad, I. 2000. J. Chem. Soc. Pak. 22: 281.
Yu, J.J. & Chou S.Y. 2000. Contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption. Chemosphere 41(3):371-8.
|