Sains Malaysiana 36(1): 77-82 (2007)
Penganggaran Saiz p-Adic Pensifar Sepunya Terbitan
Separa Polinomial Berdarjah Enam
(Estimating the p-Adic Sizes of Common Zeros of Partial
Derivative Polynomials of Degree Six)
S.H. Sapar & K.A. Mohd Atan
Jabatan Matematik, Universiti Putra Malaysia
Laboratori Matematik Teori, Institut Penyelidikan Matematik
Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Telah diketahui nilai hasil tambah eksponen S(f;pa) adalah bersandar kepada penganggaran bilangan unsur |V|, yang terdapat dalam set
dengan menandakan polinomial-polinomial terbitan separa f terhadap . Kekardinalan bagi V pula bersandar kepada saiz p-adic pensifar sepunya terbitan separa .
Makalah ini membentangkan suatu kaedah penentuan anggaran saiz p-adic bagi komponen (x,h) pensifar sepunya terbitan separa f(x,y) dalam berdarjah enam berasaskan teknik polihedron Newton yang disekutukan dengan polinomial terbabit. Polinomial berdarjah enam yang dipertimbangkan berbentuk
.
Anggaran yang diperolehi adalah dalam sebutan saiz p-adic pekali-pekali sebutan yang dominan dalam f.
Kata kunci: kekardinalan; pensifar sepunya; saiz p-adic; polihedron Newton; rajah penunjuk.
ABSTRACT
It is known that the value of the exponential sum S(f;pa) depends on the estimate of the cardinality |V|, the number of elements contained in the set
where is the partial derivatives of f with respect to . The cardinality of V in turn depends on the p-adic sizes of common zeros of the partial derivatives .
This paper presents a method of determining the p-adic sizes of the components of (x,h) a common root of partial derivative polynomials of f(x,y) in of degree six based on the p-adic Newton polyhedron technique associated with the polynomial. The degree six polynomial is of the form
The estimate obtained is in terms of the p-adic sizes of the coefficients of the dominant terms in f.
Keywords : cardinality; common zero; p-adic sizes; Newton polyhedron; indicator diagram.
RUJUKAN/REFERENCS
Chan K.L. dan. Mohd. Atan K.A 1997. On the Estimate to Solutions of Congruence Equations Associated with a Quartic Form. Journal of Physical Science 8:21-34.
Koblitz, N. 1977. p-adic Numbers, p-adic analysis and zeta Function. New York: Springer-Verlag.
Loxton J.H. dan Vaughn R.C. 1985. The Estimate of Complete Exponential Sums. Canad. Mth Bull. 28(4):440-454 .
Mohd. Atan K.A 1986. Newton Polyhedral Method of Determining p-adic Orders of Zeros Common to Two Polynomials in . Pertanika 9(3):375-380. Universiti Pertanian Malaysia.
Mohd. Atan K.A. dan Loxton J.H. 1986. Newton Polyhedra and Solutions of Congruences. In Loxton, J.H. and Van der Poorten, A.(ed). Diophantine Analysis. Cambridge : Cambridge University Press.
Mohd Atan K.A.dan Abdullah I.B 1992. Set of Solution to Congruences Equations Associated with Cubic Form. Journal of Physical Science 3:1-6.
Sapar S.H.dan Mohd Atan K.A. 2002. Penganggaran Kekardinalan Set Penyelesaian Persamaan Kongruen, Jurnal Teknologi C. 36:13-40.
|