Sains Malaysiana 37(1): 89-93(2008)

              

Application of Parallel Ensemble Monte Carlo

Technique in Charge Dynamics Simulation

(Aplikasi Teknik Monte Carlo Ensembel Selari pada

Simulasi Dinamik Cas)

 

 

A. P. Othman, R. Umar & G. Gopir

School of Applied Physics

Universiti Kebangsaan Malaysia

43600,  Bangi, Selangor D.E. , Malaysia

 

 

Received: Februari 2006 / Accepted: 12 April 2007 

 

ABSTRAK 

Di masa yang lepas, simulasi  dinamik cas bagi peranti pepejal seperti mobiliti arus dan  halaju hanyut arus fana dijalankan pada sistem kerangka utama atau pada sistem komputer berprestasi tinggi. Perkara ini berlaku kerana simulasi seperti ini sangatlah membebankan jika dijalankan pada komputer peribadi (PC) yang berasaskan pemprosesan tunggal. Bagi tujuan simulasi dinamik cas, himpunan zarah yang banyak, melebihi 40000 zarah biasanya diperlukan bagi menghasilkan keputusan yang memuaskan. Jika simulasi yang melibatkan zarah sebanyak ini dijalankan pada PC berpemprosesan tunggal dengan kaedah Monte Carlo ensemble atau Monte Carlo zarah tunggal yang lazim, masa komputasi yang diperlukan adalah terlalu lama, walaupun jika kita menggunakan PC dengan pemprosesan 2.0 MHz. Akhir-akhir ini, kaedah simulasi yang lebih cekap, mudah dibangunkan dan menjimatkan  telah wujud, ia itu dengan penggunaan  rangkaian PC yang dijalankan dalam aplikasi sejajar. Kaedah ini dilakukan dengan pembangunan jaringan kluster dalam model pelayan-klien. Pada kertas kerja ini kami melaporkan pembangunan satu rangkaian kluster LINUX bagi  mensimulasikan pemodelan peranti keadaan pepejal dengan kaedah Monte Carlo Ensembel secara sejajar. Kami telah mencadangkan penggunaan piawai Parallel Virtual Machine (PVM) bagi menjalankan algorithma yang dibangunkan. Kami juga menyertakan hasil simulasi yang jalankan pada kluster LINUX yang telah dibangunkan.

 

Kata kunci: Monte Carlo; dinamik cas; algorithm selari; kluster LINUX

 

 

ABSTRACT 

In the past, simulating charge dynamics in solid state devices, such as current mobility, transient current drift velocities are done on mainframe systems or on high performance computing facilities. This is due to the fact that, such simulations are  costly in terms of computational requirements when implemented on a single processor-based personal computers (PCs). When simulating charge dynamics, large ensembles of particles are usually preferred, such as exceeding 40000 particles, to ensure a numerically sound result. When implementing this type of simulation on a single processor PCs using the conventional ensemble or single particle Monte Carlo method, the computational time is very  long even on the fast 2.0 MHz  PCs. Lately, a more efficient, easily made available tools and cost effective solution to this problem is  the application of an array of PCs employed in a parallel application. This is  done using a computer cluster network in a master-slave model. In this paper we report the development of a LINUX cluster for the purpose of implementing parallel ensemble Monte Carlo modelling for solid states device. We have proposed the use of Parallel Virtual Machine (PVM) standards when running the parallel algorithm of the ensemble  MC simulation. Some results of the development are also presented in this paper.

 

Keywords: Monte Carlo; charge dynamics; parallel algorithm; LINUX Cluster

 

 

RUJUKAN/REFERENCES

 

Bookman, C., 2003. LINUX Clustering, Building and Maintaing LINUX Clusters NewYork.

Ferrenberg, A.M., Landau, D.P., & Wong Y.J., 1992. Monte Carlo simulations: Hidden errors from ‘good’ random number generators. Phys. Rev. Lett. 69: 3382.

 Fischetti, M.V. & Laux, S.E., 1988. Monte Carlo Analysis of Electron transport in small semiconductor devices including band structure and space-charge effects. Phys. Rev. B 38 (19): 9721-9727.

Jacoboni, C. & Reggian, L. 1983. The Monte carlo method for solution of charge transport in semiconductors with application to covalent materials  Rev. Mod. Phys. 55 (3): 645.

Jacoboni, C. and Lugli, P.  1989. The Monte carlo method for Semiconductor Device Simulation. New York: Springer-Verlag.

Karl Hess, 1991. Monte Carlo Device Simulation: Full Band and Beyond Dordrecht, The Netherlands: Kluwer Academic Publishers Group.

Kurosawa, T. 1966. Monte carlo Simulation of hot electron problems, J. Phys. Soc. Suppl. 21: 527-529.

Rubinstein, R.V. 1981.  Simulation and the Monte Carlo Method. New York: John Wiley & Sons,

Vattulainen, I. & Ala-Nissila, T. 1995 Mission impossible: Find a random pseudorandom number generator.  Comput. in Phys. 9: 500.

 

 

sebelumnya