Sains Malaysiana 37(2): 185-188 (2008)

 

Kesan Pendedahan Logam Ni,  Fe dan Mn  Terhadap

Pertumbuhan Anabaena flos-aquae  dalam Kultur Statik

(Effects of Ni, Fe and Mn Exposures Towards the Growth

of Anabaena floss-aquae in the Batchculture)

 

 

Khairiah Jusoh, Mohd. Fahmi Ismail, Shaanaz Mohd. Yusof

Tunisah Risman, Mushrifah Idris

Pusat Pengajian Sains Sekitaran dan Sumber Alam

Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

 

Nik Marzuki Sidik

Pusat Pengajian BioSains dan Bioteknologi

Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 UKM  Bangi, Selangor, Malaysia

 

Ahmad Mahir Razali

Pusat Pengajian Sains Matematik,

Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

 

Lee Yook Heng

Pusat Pengajian Sains Kimia dan Teknologi Makanan

Fakulti Sains dan Teknologi, 43600 UKM, Bangi,

Selangor, Malaysia

 

Diserahkan: Januari 2007 / Diterima: 26 Julai 2007

 

 

ABSTRAK

 

Tujuan utama kajian ini ialah untuk meneliti kesan pendedahan logam-logam berat seperti Ni, Fe dan Mn terhadap pertumbuhan Anabaena flos-aquae iaitu sejenis sianobakteria yang biasa ditemui di kawasan air tawar. Hasil kajian di makmal  menunjukkan bahawa pendedahan logam Ni ke atas A. flos-aquae adalah paling toksik berbanding dengan Fe dan Mn. Nilai LC50 96 jam untuk Ni ialah 0.321 mg/mL (kira-kira 30% perencatan). Manakala Mn adalah yang kedua toksik diikuti dengan Fe dengan nilai LC50 96 jam masing-masing ialah 0.684 mg/mL dan 3.020 mg/mL. Kajian ini membuktikan bahawa walaupun Fe dan Mn adalah mikronutrien yang perlu untuk kebanyakan sianobakteria tetapi dalam kepekatan yang terlalu tinggi, ia boleh mengakibatkan kesan ketoksikan. Perbezaan nilai ketoksikan antara Fe dan Mn terhadap A. flos-aquae adalah sebanyak lima kali dan ini menunjukkan bahawasianobakteriaini adalah lebih toleran kepada Fe berbanding Mn.

 

Kata kunci:  Sianobakteria; logam berat; pertumbuhan; kesan ketoksikan; peratus perencatan

 

 

 

ABSTRACT

 

The aim of this work is to investigate the effect of exposure of heavy metals such as Ni, Fe and Mn on the growth of the cyanobacteria Anabaena flos-aquae, which can be found in fresh water environment.  Results of the experiments showed that exposure of A. flos-aquae to Ni caused the most toxic effect as compared to exposure with Fe and Mn. The 96 hr LC50 value for Ni exposure was 0.321 mg/mL (approximately 30% inhibition), whereas Mn was the second most toxic metal followed by Fe with the 96 hr LC50 values of 0.684 mg/mL and 3.020 mg/mL respectively.  This study demonstrated that even though Fe and Mn are essential micronutrients for A. flos-aquae, both show toxic effects at high concentrations. The difference in the toxicity value between Fe and Mn for A. flos-aquae is five times and this indicates that Mn was five times more toxic to A. flos-aquae than Fe suggesting that the Cyanobacteria is more tolerant to Fe when compared with Mn.

 

Keywords:  Cyanobacteria; heavy metal; growth; toxic effect; percentage of inhibition

 

 

RUJUKAN/REFERENCES

 

Aishah Salleh  1996.  Panduan mengenali alga air tawar.  Kuala Lumpur: Dewan Bahasa dan Pustaka.

Bleuel, C., Wesenberg, D., Sutter, K., Miersch, K., Braha, B., Barlocher, F. & Krauss, G.-J. 2005. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. As a bioindicator for heavy metals 3. Cd2+ accumulation capacities and biochemical stress response of two Fontinalis species. Sci. Total Environ. 345: 13-21.

Caiola, M. G., Canini, A., Galiazzo, F. Dan  Rotilio, G.G. 2006. Superoxide dismutase in vegetative cells, heterocysts and akinetes of Anabaena cylindrica Lemm. FEMS Microbiology Letters  80:  2-3: 161.

Clark, R.B. 1992.  Marine pollution . Jil 3. Oxford: Clarendon Press.

EL-Enany, A.E. & Issa, A.A.  2000.  Cynobacteria as a biosorbent of heavy metal in sewage water.  Enviro.  Toxicol.  and Pharm  8 (20): 95-101.

Fay, P.  1983.  The Blue-greens.  London:  Edward Arnold.

Forstner, U.  &  Wittman, G.  1981. Metal pollution in the aquatic environment.  Berlin: Springler Verlag

Jin, X., Nalewajko, C. &  Kushner, D.J. 1996.  Comparative study of nickel toxicity to growth and photosynthesis in nickel-resistant and sensitive strains of Scenedesmus acutus F. alternans (Chlorophyceae).  Michrobiol Ecol. 31: 103-114.

Knauer, K., Jabusch, T. dan Sigg, L.  1999.  Manganese uptake and Mn (II) oxidation by the alga  Scenedesmus subspicatusAquatic Science. 61: 44-58.

Laws, E. A. 2000. Aquatic pollution: An introductory text. Ed. Ke 3. John Wiley & Sons, Inc.

Lu, C. M., Chau, C. W. & Zhang, J. H. 2000. Acure toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. plantesis – assessment by chlorophyll flurescence analysis. Chemosphere 41 (1-2): 191-196.

Manzini G., Ceesaro A., Delbin F., Paoletti S. & Reisenhofer E. 1984. Copper (II) binding by natural ionic polysaccharides. Part I, Potentiometeric and spectroscopic data. Bioelectrochem. Bioeng. 12: 443-454.

Mason, C.F.  1996. Biology of freshwater pollution. Singapore: Longman Group Ltd.

Mushrifah, I and Peterson P. J  1988. Cadmium and tin-binding soluble fraction of A flos aquae, Microbios. 93 (373): 75-83.

Patra, M., Bhowmik, N., Bandopadhyay, B. &  Sharma, A. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plants systems and the development of genetic tolerance. Environ. Experimen. Bot., 52: 199-223.

Spencer, D.E. 1980.  Nickel and aquatic algae. Dlm: Nriagu, J.O. (pnyt.) Nickel in the Environment.  New York: John Wiley.

Subramaniam G. &  Uma L. 1996. Cyanobacteria in pollution control. J. Sci. Indust. Res. 55: 685-692.

Takamura, N., Kasai, F. & Watanabe, M.M.  1989. Effects of Cu, Cd and Zn on photosynthesis of fresh water benthic algae.  J. App. Phycol. 1: 39-52.

Topcuoğlu, S., Güven, K.C., Balkis, N dan Kurbaşoğlu, C. 2003.  Heavy metal monitoring of marne algae from the Turkish coast of the Black Sea, 1998-2000. Chemosphere. 52: 1683-1688.

Vijver, M.G., Vink, J.P.M., Jager, T., Wolterbeek, H.T., van Straalen, N.M. & van Gestel, C.A.M. 2005. Biphastic elimination and uptake kinetics of Zn and Cd in the earthworm Lumbricus rubellus exposed to contaminated floodplain soil. Soil Biol. Biochem. 37: 1843-1851.

Volesky B. 1994. Advances in biosorption of metals: Selection of biomass types. FEMS Microbiol. Rev. 14: 291-302.

Vymazal, J. 1995.  Algae and Element Cycle in Wetlands.  USA: Lewis Publisher.

Wild, A. 1988.  Russell’s Soil Conditions and Plant Growth. 11th ed. London: Longman.

Yang, X., Feng, Y., He, Z. &  Stoffella, P.J. 2005. Molecular mechanism of heavy metal hyperaccumulation and phytoremediation. J. Trace Elements Medic. Biol. 18: 339-353.

 

sebelumnya