Sains Malaysiana 37(2): 185-188 (2008)
Kesan Pendedahan Logam Ni, Fe dan Mn Terhadap
Pertumbuhan Anabaena flos-aquae dalam Kultur Statik
(Effects of Ni, Fe and Mn Exposures Towards the Growth
of Anabaena floss-aquae in the Batchculture)
Khairiah Jusoh, Mohd. Fahmi Ismail, Shaanaz Mohd. Yusof
Tunisah Risman, Mushrifah Idris
Pusat Pengajian Sains Sekitaran dan Sumber Alam
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor, Malaysia
Nik Marzuki Sidik
Pusat Pengajian BioSains dan Bioteknologi
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor, Malaysia
Ahmad Mahir Razali
Pusat Pengajian Sains Matematik,
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor, Malaysia
Lee Yook Heng
Pusat Pengajian Sains Kimia dan Teknologi Makanan
Fakulti Sains dan Teknologi, 43600 UKM, Bangi,
Selangor, Malaysia
Diserahkan: Januari 2007 / Diterima: 26 Julai 2007
ABSTRAK
Tujuan utama kajian ini ialah untuk meneliti kesan pendedahan logam-logam berat seperti Ni, Fe dan Mn terhadap pertumbuhan Anabaena flos-aquae iaitu sejenis sianobakteria yang biasa ditemui di kawasan air tawar. Hasil kajian di makmal menunjukkan bahawa pendedahan logam Ni ke atas A. flos-aquae adalah paling toksik berbanding dengan Fe dan Mn. Nilai LC50 96 jam untuk Ni ialah 0.321 mg/mL (kira-kira 30% perencatan). Manakala Mn adalah yang kedua toksik diikuti dengan Fe dengan nilai LC50 96 jam masing-masing ialah 0.684 mg/mL dan 3.020 mg/mL. Kajian ini membuktikan bahawa walaupun Fe dan Mn adalah mikronutrien yang perlu untuk kebanyakan sianobakteria tetapi dalam kepekatan yang terlalu tinggi, ia boleh mengakibatkan kesan ketoksikan. Perbezaan nilai ketoksikan antara Fe dan Mn terhadap A. flos-aquae adalah sebanyak lima kali dan ini menunjukkan bahawasianobakteriaini adalah lebih toleran kepada Fe berbanding Mn.
Kata kunci: Sianobakteria; logam berat; pertumbuhan; kesan ketoksikan; peratus perencatan
ABSTRACT
The aim of this work is to investigate the effect of exposure of heavy metals such as Ni, Fe and Mn on the growth of the cyanobacteria Anabaena flos-aquae, which can be found in fresh water environment. Results of the experiments showed that exposure of A. flos-aquae to Ni caused the most toxic effect as compared to exposure with Fe and Mn. The 96 hr LC50 value for Ni exposure was 0.321 mg/mL (approximately 30% inhibition), whereas Mn was the second most toxic metal followed by Fe with the 96 hr LC50 values of 0.684 mg/mL and 3.020 mg/mL respectively. This study demonstrated that even though Fe and Mn are essential micronutrients for A. flos-aquae, both show toxic effects at high concentrations. The difference in the toxicity value between Fe and Mn for A. flos-aquae is five times and this indicates that Mn was five times more toxic to A. flos-aquae than Fe suggesting that the Cyanobacteria is more tolerant to Fe when compared with Mn.
Keywords: Cyanobacteria; heavy metal; growth; toxic effect; percentage of inhibition
RUJUKAN/REFERENCES
Aishah Salleh 1996. Panduan mengenali alga air tawar. Kuala Lumpur: Dewan Bahasa dan Pustaka.
Bleuel, C., Wesenberg, D., Sutter, K., Miersch, K., Braha, B., Barlocher, F. & Krauss, G.-J. 2005. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. As a bioindicator for heavy metals 3. Cd2+ accumulation capacities and biochemical stress response of two Fontinalis species. Sci. Total Environ. 345: 13-21.
Caiola, M. G., Canini, A., Galiazzo, F. Dan Rotilio, G.G. 2006. Superoxide dismutase in vegetative cells, heterocysts and akinetes of Anabaena cylindrica Lemm. FEMS Microbiology Letters 80: 2-3: 161.
Clark, R.B. 1992. Marine pollution . Jil 3. Oxford: Clarendon Press.
EL-Enany, A.E. & Issa, A.A. 2000. Cynobacteria as a biosorbent of heavy metal in sewage water. Enviro. Toxicol. and Pharm 8 (20): 95-101.
Fay, P. 1983. The Blue-greens. London: Edward Arnold.
Forstner, U. & Wittman, G. 1981. Metal pollution in the aquatic environment. Berlin: Springler Verlag
Jin, X., Nalewajko, C. & Kushner, D.J. 1996. Comparative study of nickel toxicity to growth and photosynthesis in nickel-resistant and sensitive strains of Scenedesmus acutus F. alternans (Chlorophyceae). Michrobiol Ecol. 31: 103-114.
Knauer, K., Jabusch, T. dan Sigg, L. 1999. Manganese uptake and Mn (II) oxidation by the alga Scenedesmus subspicatus. Aquatic Science. 61: 44-58.
Laws, E. A. 2000. Aquatic pollution: An introductory text. Ed. Ke 3. John Wiley & Sons, Inc.
Lu, C. M., Chau, C. W. & Zhang, J. H. 2000. Acure toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. plantesis – assessment by chlorophyll flurescence analysis. Chemosphere 41 (1-2): 191-196.
Manzini G., Ceesaro A., Delbin F., Paoletti S. & Reisenhofer E. 1984. Copper (II) binding by natural ionic polysaccharides. Part I, Potentiometeric and spectroscopic data. Bioelectrochem. Bioeng. 12: 443-454.
Mason, C.F. 1996. Biology of freshwater pollution. Singapore: Longman Group Ltd.
Mushrifah, I and Peterson P. J 1988. Cadmium and tin-binding soluble fraction of A flos aquae, Microbios. 93 (373): 75-83.
Patra, M., Bhowmik, N., Bandopadhyay, B. & Sharma, A. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plants systems and the development of genetic tolerance. Environ. Experimen. Bot., 52: 199-223.
Spencer, D.E. 1980. Nickel and aquatic algae. Dlm: Nriagu, J.O. (pnyt.) Nickel in the Environment. New York: John Wiley.
Subramaniam G. & Uma L. 1996. Cyanobacteria in pollution control. J. Sci. Indust. Res. 55: 685-692.
Takamura, N., Kasai, F. & Watanabe, M.M. 1989. Effects of Cu, Cd and Zn on photosynthesis of fresh water benthic algae. J. App. Phycol. 1: 39-52.
Topcuoğlu, S., Güven, K.C., Balkis, N dan Kurbaşoğlu, C. 2003. Heavy metal monitoring of marne algae from the Turkish coast of the Black Sea, 1998-2000. Chemosphere. 52: 1683-1688.
Vijver, M.G., Vink, J.P.M., Jager, T., Wolterbeek, H.T., van Straalen, N.M. & van Gestel, C.A.M. 2005. Biphastic elimination and uptake kinetics of Zn and Cd in the earthworm Lumbricus rubellus exposed to contaminated floodplain soil. Soil Biol. Biochem. 37: 1843-1851.
Volesky B. 1994. Advances in biosorption of metals: Selection of biomass types. FEMS Microbiol. Rev. 14: 291-302.
Vymazal, J. 1995. Algae and Element Cycle in Wetlands. USA: Lewis Publisher.
Wild, A. 1988. Russell’s Soil Conditions and Plant Growth. 11th ed. London: Longman.
Yang, X., Feng, Y., He, Z. & Stoffella, P.J. 2005. Molecular mechanism of heavy metal hyperaccumulation and phytoremediation. J. Trace Elements Medic. Biol. 18: 339-353.
|