Sains
Malaysiana 37(3): 217-221 (2008)
Fabrication
of Silicon Oxide Nanodot Arrays by
Scanning
Probe Lithography
(Fabrikasi Nanotitik Tersusun Silikon Oksida
Menggunakan
Litografi Kuar Imbasan)
Sabar D. Hutagalung, Teguh
Darsono
& Khatijah A. Yaacob
School of Materials and Mineral Resources Engineering
Universiti Sains Malaysia, 14300 Nibong Tebal
Penang, Malaysia
Received: 12
June 2007 / Accepted: 6 November 2007
Abstract
Atomic force microscopes (AFM) as one of the scanning
probe microscopy (spm) modes have become useful tools, not only
for observing surface morphology and nanostructure topography but
also for fabrication of various nanostructures itself. In this work,
silicon oxide (SiOx) patterns were formed on Si(100)
surface by means of AFM anodization, where a non-contact mode used to oxidize Si
wafer at the nanoscale size. The oxide patterns could serve as masks
for the chemical etching of Si surface in alkaline solution in order
to create the Si nanodots. A special attention is paid to finding
relations between the size of dots and operational parameters as
tip bias voltage and tip writing speed Dot arrays with 10 nm high
and less than 50 nm in diameter have been successfully fabricated.
The ability to control oxidation and scanning speed can be utilized
in fabrication of complex nanostructures and make scanning probe
lithography (SPL) as a very promising lithographic technique in
nanoelectronic devices, nanophotonics and other high-tech areas.
Keywords: Silicon oxide; nanodot;
scanning probe lithograpy; atomic force microscope; tip voltage
Abstrak
Mikroskop daya atom (AFM) sebagai salah satu daripada
mod mikroskop kuar imbasan (SPM) telah menjadi perkakasan yang sangat
berguna bukan sahaja untuk pengamatan morfologi permukaan dan topografi
nanostruktur tetapi juga untuk fabrikasi berbagai-bagai nanostruktur
itu sendiri. Corak silikon oksida (SiOx) telah dibentuk
pada permukaan Si(100) dengan penganodan AFM, dengan mod AFM taksentuh
telah diguna untuk mengoksidakan kepingan Si pada saiz berskala
nano. Corak-corak oksida ini boleh digunapakai sebagai topeng untuk
punaran kimia permukaan Si dalam larutan beralkali yang membolehkan
pembentukan nanowayar atau nanotitik Si. Tumpuan telah diberikan
kepada hubungkait antara saiz nanostruktur oksida dan parameter-parameter
kendalian seperti voltan sampel-hujung dan laju penulisan hujung.
Hasilnya, titik tersusun dengan ketinggian 10 nm dan garispusat
kurang daripada 50 nm telah berjaya dihasilkan. Kebolehkawalan pengoksidaan
dan laju imbasan dapat digunakan dalam fabrikasi nanostruktur kompleks
sehingga litografi kuar imbasan (spl) merupakan suatu teknik litografi
yang amat menggalakkan dalam peranti nanoelektronik, nanofotonik
dan bidang-bidang berteknologi tinggi lainnya.
Kata kunci: Silikon oksida; nanotitik; litografi kuar
imbasan; mikroskop daya atom; voltan hujung
RUJUKAN/References
Bae, S., Han, C., Kim, M.S., Chung, C.C. & Lee,
H. 2005. Atomic force microscope anodization lithography using pulsed
bias voltage synchronized with resonance frequency of cantilever.
Nanotechnology 16: 2082–2085.
Bouchiat, V. & Esteve, D. 1996. Lift-off lithography using an atomic force
microscope. Appl. Phys. Lett. 69: 3098–3100.
Cabrera, N. & Mott, N.F. 1948. Theory of the oxidation of metals. Rep. Prog. Phys. 12: 163-169.
Cervenka, J., Kalousek, R., Bartosik,
M., Skoda, D., Tomanec, O. & Sikola, T. 2006. Fabrication of nanostructures on Si(100) and GaAs(100) by local anodic oxidation.
Appl. Surf. Sci. 253: 2373–2378.
Chen,
Y. J., Hsu, J.H. & Lin, H.N. 2005. Fabrication of metal nanowires by atomic force microscopy nanoscratching
and lift-off process. Nanotechnology 16:
1112-1115.
Dagata, J.A., Perez-Murano, F.,
Abadal, G., Morimoto, K., Inoue, T., Itoh, J. & Yokoyama, H.
2000. Predictive model for scanned probe oxidation kinetics. Appl.
Phys. Lett. 76: 2710–2712.
Dagata, J.A., Perez-Murano, F.,
Martin, C., Kuramochi, H. & Yokoyama, H. 2004. Current, charge and capacitance during scanning probe oxidation of silicon.
II. Electrostatic and meniscus forces acting on cantilever bending.
J. Appl. Phys. 96: 2386–2392.
Dagata, J.A., Schneir, J., Harary,
H.H., Evans, C.J., Postek, M.T. & Bennett, J. 1990. Modification of hydrogen-passivated silicon by a scanning tunneling microscope
operating in air. Appl. Phys. Lett. 56: 2001-2003.
Dai, H., Franklin, N. & Han,
J. 1998. Exploiting the properties of carbon nanotubes for nanolithography.
Appl. Phys. Lett. 73: 1508–1510.
Dubois, E. & Bubendorff, J.L.
2000. Kinetics of scanned probe oxidation: Space-charge limited
growth. J. Appl. Phys. 87: 8148–8152.
Hu, S., Hamidi, A., Altmeyer, S.,
Koster, T., Spangenberg, B. & Kurz, H. 1998. Fabrication of
silicon and metal nanowires and dots using mechanical atomic force
lithography. J. Vac. Sci. Technol. B 16:
2822–2824.
Klehn B. & U. Kunze, 1999. Nanolithography with an atomic force microscope
by means of vector-scan controlled dynamic plowing. J. Appl.
Phys. 85: 3897-3903.
Nyffenegger, R.M. & Penner, R.M. 1997. Nanometer-scale surface
modification using the scanning probe microscope: Progress since
1991. Chem. Rev. 97:
1195-1230.
Snow, E.S., Park, D. & Campbell, P.M. 1996. Single-atom point contact devices fabricated with an atomic force microscope.
Appl. Phys. Lett. 69: 269–271.
Soh, H.T., Guarini, K.W. & Quate,
C.F. 2001. Scanning probe lithography. Boston, MA. Kluwer,
Sohn, L.L. & Willett, R.L. 1995.
Fabrication of nanostructures using atomic-force-microscope-based
lithography. Appl. Phys.
Lett. 67: 1552-1554.
Stievenard, D., Fontaine, P.A. &
Dubois, E. 1997. Nanooxidation using a scanning probe microscope:
An analytical model based on field induced oxidation. Appl. Phys. Lett. 70: 3272-3274.
Sugimura, H. & Nakagiri,
N. 1995. Fabrication of silicon nanostructures through
scanning probe anodization followed by chemical etching. Nanotechnology 6: 29-33.
Wendel, M., Kuhn, S., Lorenz, H.,
Kotthaus, J.P. & M. Holland. 1994. Nanolithography with an
atomic force microscope for integrated fabrication of quantum electronic
devices. Appl. Phys. Lett.
65: 1775-1777.
Wouters, D. & Schubert, U.S. 2004. Nanolithography and nanochemistry:
Probe-related patterning techniques and chemical modification for
nanometer-sized devices. Angew. Chem. Int. Edn. 43: 2480-2495.
|