Sains Malaysiana 37(3): 255-259(2008)
Gallium
Nitride: A Nanoscale Study using Electron
Microscopy
and Associated Techniques
(Galium Nitrida:
Kajian Skala Nano Menggunakan Mikroskop
Elektron dan Teknik-Teknik
Berkaitan)
Mohammed Benaissa
CNRST, 52, Bd Omar Ibn Khattab
B.P. 8027, Agdal, 10102 Rabat, Morocco
Philippe Vennéguès
CNRS-CRHEA, Rue Bernard Grégory
06560 Valbonne, France
Received: 12 June 2007 / Accepted: 18 September 2007
ABSTRACT
A complete nanoscale
study on GaN thin films doped with Mg. This study was carried out
using TEM and associated techniques such as HREM, CBED, EDX and
EELS. It was found that the presence of triangular defects (of few
nanometers in size) within GaN:Mg films were at the origin of unexpected
electrical and optical behaviors, such as a decrease in the free hole density at high Mg doping. It
is shown that these defects are inversion domains limited with inversion-domains
boundaries.
Keywords: Electron microscopy; Mg; GaN
ABSTRAK
Kajian skala nano
yang lengkap film nipis GaN yang didop dengan Mg dilaporkan. Kajian
telah dijalankan menggunakan TEM dan teknik-teknik berkaitan seperti
HREM, CBED, EDX dan EELS. Didapati
kehadiran kecacatan segi tiga (dengan saiz beberapa nanometer)
dalam GaN:Mg merupakan punca kepada sifat elektrik yang tidak
dijangka, seperti penurunan ketumpatan lohong bebas pada pengedopan
Mg yang tinggi. Kecacatan ini adalah domain songsangan yang dihadkan
oleh sempadan domain songsang.
Kata kunci: Mikroskopi elektron; Mg; GaN
RUJUKAN/REFERENCES
Grandjean N., Dussaigne
A., Pezzagna S., & Vennéguès P., 2003. Control of the polarity of GaN
films using an Mg adsorption layer, J.
Cryst. Growth 251: 460-464.
Götz
W., Johnson N.M., Walker J., Bour D.P., & Street R.A., 1996.
Local vibrational
modes of the Mg–H acceptor complex in GaN, Appl. Phys. Lett. 69: 3725-3727.
Egerton R.F., 1989. Electron Energy
Loss Spectroscopy in the Electron Microscope, NY: Plenum Press.
Inokuti
M., 1971.
Inelastic Collisions of Fast Charged
Particles with Atoms and Molecules—The Bethe Theory Revisited, Rev. Mod. Phys. 43: 297-347.
Kaeding J. F., Asamizu H., Sato H., Iza M., Mates T. E., DenBaars S. P., Speck J. S., & Nakamura S., 2006. Realization of high hole concentrations
in Mg doped semipolar (10-1-1) GaN, Appl.
Phys. Lett. 89: art no. 202104.
Kaufmann U., Kunzer
M., Maier M., Obloh H., Ramakrishnan A., Santic B., & Schlotter
P., 1998. Nature
of the 2.8 ev photo-luminescence band in Mg doped GaN, Appl.
Phys. Lett. 72: 1326-1328.
Kaufmann U., Schlotter P., Obloh
H., Köhler K., & Maier M., 2000. Hole conductivity and compensation
in epitaxial GaN:Mg layers, Phys. Rev. B 62: 10867-10872.
Lambrecht
W. R. L., Rashkeev S. N., Segall B., Lawniczak-Jablonska K., Suski
T., Gullikson E. M., Underwood J. H., Perera R. C. C., Rife J. C.,
Grzegory I., Porowski S., & Wickenden D. K., 1997. X-ray absorption, glancing-angle
reflectivity, and theoretical study of the N K- and Ga M2,3-edge
spectra in GaN, Phys. Rev. B 55: 2612-2622.
Leroux M., Grandjean
N., Beaumont B., Nataf G., Semond F., Massies J., & Gibart P.,
1999. Temperature quenching of photoluminescence intensities in
undoped and doped GaN, J.
Appl. Phys. 86: 3721-3728.
Nakamura S. & Fasol G., 1997. The Blue Laser Diode,
Berlin: Springer.
Northrup, J.E. 2003.
Magnesium incorporated at (001) inversion domain boundaries
in GaN. Appl. Phys. Lett.
82: 2278-2280.
Oh E., Park H., &
Park Y., 1998. Influence of potential
fluctuation on optical and electrical properties in GaN,
Appl. Phys. Lett. 72:
1848-1850.
Romano
L. T., Kneissi M., Northrup J. E., Van de Walle C. G., & Treat
D. W., 2001. Influence
of microstructure on the carrier concentration of Mg-doped GaN films, Appl. Phys. Lett. 79: 2734-2736.
Simbrunner
C., Wegscheider M., Quast M., Li T., Navarro-Quezada A., Sitter H., Bonanni A., & Jakiela R., 2007. On the effect of periodic Mg
distribution in GaN:
-Mg, Appl. Phys. Lett. 90: art. no. 142108.
Romano
L. T., Kneissi M., Northrup J. E., Van de Walle C. G., & Treat
D. W., 2001. Influence
of microstructure on the carrier concentration of Mg-doped GaN films, Appl. Phys. Lett. 79: 2734-2736.
Simbrunner
C., Wegscheider M., Quast M., Li T., Navarro-Quezada A., Sitter H., Bonanni A., & Jakiela R., 2007. On the effect of periodic Mg
distribution in GaN:
-Mg, Appl. Phys. Lett. 90: art. no. 142108.
Smith M., Chen G.
D., Lin J. Y., Jiang H. X., Salvador A., Sverdlov B. N., Botchkarev A., Morkoc H.¸ & Goldenberg B., 1996. Mechanisms of
band-edge emissions in Mg-doped p-type GaN. Appl. Phys. Lett. 68: 1883-1885.
Sun Q., Selloni A., Myers T. H., & Alan Doolittle W., 2006. Energetics
of Mg incorporation at GaN(0001) and GaN(000-1) surfaces, Phys. Rev. B 74: art no. 155337.
Vennéguès P., Benaissa M., Beaumont B., Feltin E., De Mierry
P., Dalmasso S., Leroux M., & Gibart P., 2000. Pyramidal defects in metalorganic
vapor phase epitaxial Mg doped GaN, Appl. Phys. Lett.
77: 880-882.
Vennéguès P., Leroux M., Dalmasso S., Benaissa
M., De Mierry P., Lorenzini P., Damilano B., Beaumont B., Massies
J., & Gibart P., 2003. Atomic
structure of pyramidal defects in Mg-doped GaN, Phys. Rev. B 68: art 2352141-2352148.
|