Sains Malaysiana 37(3): 281-283(2008)
Electrical Characterization of Cross-linked ZnO Nanostructures Grown
on Si and Si/SiO2 Substrate
(Ciri Elektrik Nanostruktur
ZnO Taut Silang yang
Ditumbuhkan di atas Substrat
Si/SiO2)
C.
F. Dee Chang Fu, Burhanudin Yeop Majlis & Muhammad Mat Salleh
Institute of Microengineering
and Nanoelectronics (IMEN),
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Muhammad Yahaya
School of Applied Physics, Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor, Malaysia
ABSTRACT
ZnO nanostructures were synthesized on Si and Si/SiO2
substrate by well established thermal-evaporation-deposition
method which involves vapor-solid growth process for non–catalysts
activated growth. Scanning electron micrograph shows difference
type of ZnO nanostructures have been synthesized. Electrical I-V
characterization was measured by using Al as electrode at room temperature.
Schottky contacts were obtained for both contact of ZnO nanowires
and Al. A symmetric metal-semiconductor-metal junction was obtained.
A two-opposit-diode equivalent circuit
was applied to explain this I-V characteristic.
Keyword: ZnO nanostructures; Schottky contacts;
I-V measurement
ABSTRAK
Penumbuhan
struktur nano disintesis di atas substrat Si dan Si/SiO2 dengan menggunakan kaedah
yang sudah terkenal iaitu kaedah pengewapan-pemendapan-terma di
mana ia melibatkan proses penumbuhan wap-pepejal tanpa menggunakan
pemangkin. Mikrograf imbasan electron
menunjukkan pelbagai jenis nanostruktur ZnO. Pencirian I-V telah
dilakukan pada suhu bilik dengan menggunakan Al sebagai elektrod.
Sentuhan Schottky didapati terbentuk pada kedua-dua nanostruktur dengan Al. Satu graf simpang simetri logam-semikonduktor-logam
terbentuk diperolehi. Satu model
yang terdiri daripada dua diod yang berhadapan satu sama lain telah digunakan bagi menerangkan sifat graf I-V yang
diperolehi.
Kata
kunci: nanostruktur ZnO; sentuhan Schottky; pengukuran
I-V
RUJUKAN/REFERENCES
Banerjee, D., Lao, J. & Ren, Z. 2006.
Design of nanostructured materials.
In Schulz, M. J., Kelkar, A. D. &
Sundaresan, M. J. (Eds.) Nanoengineering of structural, functional and smart materials.
1st Ed. New York: CRC Press.
Chu, X., Jiang, D., Aleksandra,
B. D. & Yu, H. L. 2005. Gas-sensing
properties of thick film based on ZnO
nano-tetrapods. Chem.
Phys. Lett. 401: 426-429.
Cox, G. A. & Tredgold,
R. H. 1967. On
the electrical conductivity of calcium titanate
crystals. J. Appl.
Phys. 18: 37-40.
Cui, Y., Lauhon, L. J., Gudiksen,
M. S., Wang, J. & Lieber, C. M. 2001. Diameter-controlled synthesis of single crystal silicon
nanowires. Appl. Phys. Lett. 78: 2214-2216.
Dai, Z. R., Pan, Z. W. & Wang,
Z. L. 2002. Gallium
oxide nanoribbons and nanosheets.
J. Phys. Chem. B 106:
902-904.
Ijima, S. 1991. Helical microtubules of
graphite carbon. Nature
354: 56-58.
Li, Q. H., Wan, Q., Chen, Y. J.,
Wang, T. H., Jia, H. B. & Yu, D. P. 2004. Stable field emission from tetrapod-like ZnO nanostructures. Appl. Phys. Lett.
85: 636-638.
Liao, Z.-M., Liu, K.-J., Zhang,
J.-M., Xu, J. & Yu, D.-P. 2007. Effect of surface states on electron transport in individual
ZnO nanowires. Phys. Lett. A 367: 207-210.
Pan, Z. W., Dai, Z. R. & Wang,
Z. L. 2001. Nanobelts of semiconducting oxides. Science 291:
1947-1949.
Wang, X. & Wang, Z. L. 2006. Nanobelts and nanowires of functional oxides.
In Schulz, M. J., Kelkar, A. D. &
Sundaresan, M. J. (Eds.) Nanoengineering of structural, functional and smart materials.
1st Ed. New York: CRC Press.
Wang, Z. L. & Song, J. 2006. Piezoelectric nanogenerators based on zinc oxide nanowire
arrays. Science 312: 242-246.
Yang, P., Yan, H., Mao, S., Russo,
R., Johnson, J., Saykally, R., Morris,
N., Pham, J., He, R. & Choi, H.-J. 2002. Control growth of ZnO
nanowires and their optical properties.
Adv. Funct. Mater. 12: 323-331.
Younan, X., Peidong,
Y., Yugang, S., Yiying,
Y., Franklin, K. & Haoquan, Y. 2003. One-Dimensional Nanostuctures:
Synthesis, Characterization and Applications. Advanced Materials 15: 353-388.
Zhang, Z. Y., Jin, C. H., Liang, X.
L., Chen, Q. & Peng, L.M. 2006. Current-voltage characteristics and
parameter retrieval of semiconducting nanowires.
Appl. Phys. Lett.
88: 073102.
|