Sains Malaysiana 38(1): 77-83(2009)
Optimization of Fluorescent Silicon Nanomaterial Production
Using Peroxide/Acid/Salt Technique
(Pengoptimuman Penghasilan Nanobahan Silikon Berpendaflour
Menggunakan Teknik Peroksida/Asid/Garam)
Laila H. Abuhassan
Department of Physics,
Faculty of Science
University
of Jordan, Jubeiha, Amman 11942, Jordan
Received: 30 January 2008 / Accepted: 13 June 2008
ABSTRACT
Silicon nanomaterial was prepared using the peroxide/acid/salt technique in which an aqueous
silicon-based salt solution was added to H2O2/HF
etchants. In order to optimize the experimental conditions for silicon nanomaterial production, the amount of nanomaterial produced was studied as a function of the volume of the silicon salt solution
used in the synthesis. A set of samples was prepared using: 0, 5, 10, 15, and
20 mL of an aqueous 1 mg/L metasilicate solution. The area under the corresponding peaks in the infrared (ir) absorption spectra was used as a qualitative indicator
to the amount of the nanomaterial present. The
results indicated that using 10 mL of the metasilicate solution produced the highest amount of nanomaterial. Furthermore, the results demonstrated that
the peroxide/acid/salt technique results in the enhancement of the production
yield of silicon nanomaterial at a reduced power
demand and with a higher material to void ratio. A model in which the silicon
salt forms a secondary source of silicon nanomaterial is proposed. The auxiliary nanomaterial is deposited
into the porous network causing an increase in the amount of nanomaterial produced and a reduction in the voids present.
Thus a reduction in the resistance of the porous layer, and
consequently reduction in the power required, are expected.
Keywords: infrared; peroxide/acid/salt; silicon nanomaterial; silicate
ABSTRAK
Nanobahan Si telah disediakan daripada teknik campuran peroksida/asid/garam
yang melibatkan penambahan larutan akueus berasaskan silika kepada pemunar H2O2/HF.
Untuk mengoptimumkan keadaan eksperimen penghasilan nanobahan Si, kuantiti
nanobahan yang dihasilkan dikaji sebagai fungsi isipadu larutan garam Si yang
digunakan dalam sintesis yang dilakukan. Beberapa set sampel disediakan dengan
menggunakan 0, 5, 10, 15, dan 20 mL larutan akueus 1 mg/L metasilikat. Luas
kawasan di bawah puncak sepadan spektra penyerapan inframerah digunakan sebagai
penunjuk kuantitatif terhadap amaun penghasilan nanobahan Si. Keputusan yang
diperolehi menunjukkan penggunaan 10 mL larutan metasilikat menghasilkan amaun nanobahan
yang tertinggi. Diperhatikan juga teknik campuran peroksida/asid/garam yang
digunakan dapat meningkatkan perolehan hasil nanobahan Si pada keperluan kuasa
yang rendah selain dapat menghasilkan nisbah bahan terhadap liang yang lebih
tinggi. Satu model yang mana garam Si membentuk sumber sekunder Si disarankan
di dalam artikel ini. Penggunaan nanobahan tambahan yang diendapkan ke atas jaringan
poros menyebabkan peningkatan amaun nanobahan yang dihasilkan yang sekaligus
mengurangkan pembentukan liang. Oleh itu, pengurangan rintangan lapisan poros
dan seterusnya pengurangan permintaan kuasa adalah dijangkakan.
Kata kunci: infra-merah; nanobahan Si; peroksida/asid/garam; silikat
RUJUKAN/REFERENCES
Abuhassan, L.H. & Nayfeh, M. 2007. Material analysis of fluorescent Si nanomaterial prepared from silicate water glass solutions. Dirasat 34:
183-191.
Abuhassan, L.H. & Nayfeh, M. 2005. Electrodeposition of
fluorescent Si nanomaterial from acidic sodium
silicate solutions. Mat. Res.
Soc. Symp. Proc. 862: A8.10.1-A8.10.5.
Baldwin, R.K. Pettigrew,
K.A. Garno, J.C. Power, P.P. Liu, G-y. & Kauzlarich,
S.M. 2001. Room temperature solution synthesis of alkyl-capped
tetrahedral shaped silicon nanocrystals. J. Am. Chem. Soc. 124: 1150-1151.
Belomoin,
G. Therrien. J. Smith, A. Rao. S., Twesten, R., Chaieb, S. Nayfeh, M.H. Wagner,
L. & Mitas, L. 2002. Observation
of a magic discrete family of ultrabright Si nanoparticles. Appl.
Phys. Lett. 80: 841-843.
Bessais,
B. Ben Younes, O. Ezzaouia,
H. Mliki, N. Boujmil, M.F. Oueslati, M. & Bennaceur, R. 2000. Morphological changes in porous silicon
nanostructures: non-conventional photoluminescence shifts and correlation with
optical absorption. J. Lumin. 90: 101-109.
Cullis, A.G. Canham,
L.T. & Calcott, P.D.J. 1997. The structural and luminescence properties of porous silicon. J. Appl. Phys. 82: 909-965.
Dian, J. Macek, A. Niznansky, D. Nemec, I. Vrkoslav, V. Chvojka, T. & Jelinek,
I.
2004. SEM and
HRTEM study of porous silicon-relationship between fabrication, morphology and
optical properties. Appl. Sur. Sci.
238: 169-174.
Di Nunzio,
P.E. & Martelli, S. 2006. Coagulation and
aggregation model of silicon nanoparticles from laser pyrolysis. Aerosol
Science & Technology 40: 724-734.
Eckhoff,
D.A. Sutin, J.D.B. Clegg, R.M. Gratton,
E. Rogozhina, E.V. & Braun, P.V. 2005. Optical
characterization of ultrasmall Si nanoparticles prepared through electrochemical
dispersion of bulk silicon. J. Phys. Chem.
B. 109: 19786-19797.
Heath, J.R.
1992. A
liquid-solution-phase synthesis of crystalline silicon. Science 258: 1131-1133.
Herino, R. Bomchil,
G. Barla, K. Bertrand, C. & Ginoux,
J.L. 1987. Porosity and pore size distributions of porous silicon
layers. J. Electrochem.
Soc. 134: 1994-2000.
Holmes, J.D. Ziegler,
K.J. Doty, R.C. Pell, L.E. Johnston, K.P. & Korget,
B.A. 2001. Highly luminescent silicon nanocrystals with discrete optical transitions. J.
Am. Chem. Soc. 123: 3743-3748.
Kobyashi,
M. Liu, S-M. Sato, S. Yao, H. & Kimura, K. 2006. Optical evaluation of silicon nanoparticles prepared by arc discharge method in liquid nitrogen. Jap. J. Appl. Phys. 45:
6146-6152.
Kumar, P. & Huber,
P. 2007. Effect of etching parameter on pore size and
porosity of electrochemically formed nanoporous silicon. J. Nanomat.
Article ID 89718 (4pp).
Mitas, L. Therrien,
J. Twesten, R. Belomoin, G.
& Nayfeh, M.H. 2001. Effect
of surface reconstruction on the
structural prototypes of ultrasmall ultrabright Si29 nanoparticles. Appl. Phys. Lett.
78: 1918-1920.
Nayfeh, M.H. Rogozhina,
E.V. & Mitas, L. 2003. Synthesis, Functionalization and Surface Treatment of Nanoparticles. Edited by
Marie-Isabelle Baraton. USA American Scientific Publishers: 173-231.
Nielsen, D. Abuhassan, L.H. Alchihabi, M., Al-Muhanna, A.
Host, J. & Nayfeh, M.H. 2007. Current-less anodization of intrinsic
silicon powder grains: Formation of fluorescent Si nanoparticles. J. Appl. Phys. 101: 114302/1-11403/3.
Saunders, W.A. Sercel, P.C. Lee, R.B. Atwater, H.A. Vahala,
K.J., Flagan, R.C. & Escorcia-Aparcio,
E.J. 1993. Synthesis of luminescent silicon nanoclusters by spark ablation. Appl. Phys. Lett. 63: 1549-1551.
Sweryda-Krawiec, B., Casagneau, T. & Fendler, J.H.
1999. Surface modification of silicon nanocrystallites by alcohols. J. Phys. Chem. B 103: 9524-9529.
Tinsley-Bown, A.M. Canham, L.T. Hollings,
M. Anderson, M.H. Reeves, C.L. Cox, T.I. Nicklin, S. Squirrell, D.J. Perkins, E. Hutchinson, A. & Sailor,
M.J. 2000. Phys. Stat. Sol. 182:
547-553.
Timoshenko, V.Yu. Osminkina, L.A. Efimova, A.I. Golovan, L.A. Kashkarov, P.K. Kovalev. D. Kunzner, N. Gross, E. Diener, J. & Koch, F. 2003. Phys. Rev. B. 67: 113405-113408.
Townsend,
P.D. & Killey, J.C. 1973. Colour centres and imperfections
in insulators and semiconductors. Chapter 3. Sussex University Press.
Yamani,
Z. Thompson, H. Abuhassan, L.H. & Nayfeh, M.H. 1997. Ideal anodization of silicon. Appl. Phys. Lett.
70(25): 3404-3406.
Yang,
C-S. Bley, R.A. Kauzlarich, S.M. Lee, H.W.H. &
Delgado, G.R. 1999. Synthesis of alkyl-terminated
silicon nanoclusters by a solution route. J. Am. Chem. Soc. 121: 5191-5195.
Yoshida,
T. Takeyama, S. Yamada, Y. & Mutoh, K. 1996. Nanometer-sized silicon
crystallites prepared by excimer laser ablation in
constant pressure inert gas. Appl. Phys. Lett. 68: 1772-1774.
Zhang, X. Neiner, D. Wang, S. Louie, A.Y. &
Kauzlarich, S.M.
2007. A
new solution route to hydrogen-terminated silicon nanoparticles:
synthesis, functionalization, and water stability. Nanotech. 18: 095601.
Zhu,
X.P. Yukawa, T. Kishi, T. Hirai, M. Suematsu, H. Jiang, W. & Yatsui. 2005. Synthesis of light-emitting silicon nanoparticles by intense pulsed ion-beam evaporation. J. Nanoparticle Res. 7: 669-673.
Zhu,
Y. Wang, H. & Ong, P.P. 2000. Strong and
stable photoluminescencefrom sputtered silicon
nanoparticles. J. Phys. D: Appl. Phys.
33: 1965-1968.
|