Sains Malaysiana
38(3): 287-294(2009)
Identification and Characterisation of a Copper-inducible
Metallothionein
Gene from Cockle, Anadara
granosa
(Pengenalpastian dan
Pencirian Gen Metalotionin yang Diaruh oleh Logam
Kuprum dalam Kerang, Anadara
granosa)
Kok-Kee Wong1, Noor-Arniwati Mat-Daud2, Roohaida Othman2, Zubir Din3, Kiew-Lian Wan2 & Salmijah Surif2*
1School of Environmental & Natural Resource Sciences
Faculty of Science & Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor DE, Malaysia
2School of Biosciences & Biotechnology, Faculty of Science & Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi
Selangor DE, Malaysia
3Centre for Estuarine & Coastal Studies, Universiti Sains Malaysia
11800 Minden, Penang, Malaysia
Diserahkan: 1 Julai 2008 / Diterima: 20 Oktober 2008
ABSTRACT
The cockle, Anadara granosa, was experimentally
exposed to low (0.1 mg/L) and sublethal (1.0 mg/L) doses of copper (Cu) for a
period of 24 hrs. Significant increase in Cu concentrations in whole tissues
and hepatopancreas compared to control animals were observed. In order to study
the effect of copper exposure at molecular levels, a subtractive cDNA library
was constructed from the hepatopancreas of cockles exposed to 1.0 mg/L Cu.
Screening of the subtractive cDNA library using reverse northern analysis resulted
in several differentially expressed genes, including one that codes for
metallothionein (MT). The complete coding sequence of the MT gene (designated
as AnaMT2) reveals an open reading
frame of 234 bp in length that encodes a 77 amino acid polypeptide as revealed
by the deduced amino acid composition. Although showing similarities with other
molluscan MTs, AnaMT2 can
be distinguished by its lower glycine and higher asparagine and proline
content. Expression analysis of the AnaMT2 by northern analysis indicated higher mRNA level in cockle exposed to 1.0 mg/L Cu
and was undetectable in those treated with 0.1 mg/L. This suggests that AnaMT2 represents a primarily inducible MT
not highly expressed under basal conditions.
Keywords: Cockle
copper; metallothionein; subtractive hybridisation
ABSTRAK
Kerang, Anadara
granosa didedahkan kepada logam kuprum (Cu) pada dos rendah (0.1 mg/L) dan
dos sub-maut (1.0 mg/L) untuk tempoh 24 jam. Peningkatan aras Cu yang
signifikan diperhatikan pada kedua-dua tisu keseluruhan kerang serta tisu hepa-opankreas
yang terdedah kepada Cu berbanding sampel kawalan. Untuk mengkaji kesan Cu pada
aras molekul, satu perpustakaan cDNA subtraktif telah dibina menggunakan tisu
hepatopankreas kerang yang didedahkan kepada 1.0 mg/L Cu. Penyaringan
perpustakaan cDNA subtraktif ini, menggunakan pemblotan northern berbalik, menghasilkan
beberapa gen yang diekspres secara berbeza berbanding
kawalan, termasuklah gen yang mengkodkan metalotionin (MT).
Gen
MT
jujukan penuh (AnaMT2) ini mempunyai
jujukan rangka terbuka ORF bersaiz 234 pb dan mengekodkan 77 asid amino
polipeptida melalui komposisi asid amino yang
dideduksi. Walaupun terdapat persamaan dengan MT daripada kumpulan moluska, AnaMT2 ini dapat dibezakan daripada yang
lain daripada segi kandungan asparagina dan prolina
yang secara relatifnya lebih tinggi dan glisina yang lebih rendah. Kajian
pengekspresan gen AnaMT2 menggunakan
teknik pemblotan northern menunjukkan aras pengekspresan mRNA agak tinggi dalam
tisu terdedah kepada 1.0 mg/L Cu dan tidak dapat dikesan dalam sampel yang
didedahkan kepada 0.1 mg/L Cu. Ini mencadangkan bahawa AnaMT2 adalah MT yang diinduksi logam dan kurang diekspres dalam keadaan biasa.
Kata kunci: Kerang; kuprum; metalotionin; penghibridan
subtraktif
RUJUKAN
Altschul,
S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman,
D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucl. Acids Res. 25: 3389-3402.
Barsyte, D., White, K.N. & Lovejoy, D.A. 1999. Cloning and
characterization of metallothionein cDNAs in the mussel Mytilus edulis L. digestive gland. Comp. Biol. Physiol. 122C: 287-296.
Bebianno, M.J., Machado,
L.M. 1997. Concentrations of
metals and metallothioneins in Mytilus
galloprovincialis along the south coast of
Portugal
. Mar. Pollut.Bull. 34: 666-671.
Blasco, J. & Puppo, J. 1999. Effect of
heavy metals (Cu, Cd & Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca:
Bivalvia). Comp. Biol. Physiol. 122C: 253-263.
Cajaraville, M.P.,
Bebianno, M.J., Blasco, J., Porte, C., Sarasquete, C., & Viarengo, A. 2000. The use of biomarkers to
assess the impact of pollution in coastal environments of the
Iberian
Peninsula
: a practical approach. Sci. Total Environ. 247: 295-311.
Chan, M.K., Othman, R., Zubir, D. &
Salmijah, S. 2002. Induction of a putative metallothionein gene in the blood
cockle, Anadara granosa, exposed to
cadmium. Comp. Biol. Physiol. 131C:
123-132.
Chomczynski, P. & Sacchi, N. 1987.
Single step method of RNA isolation by acid guanidinium
thiocyanate-phenol-chloroform. Anal. Biochem. 162: 156-159.
Clayton
,
M.E.
, Steinmann, R., Fent, K. 2000. Different
expression patterns of heat shock proteins hsp 60 and hsp 70 in zebra mussels (Dreissena polymorpha) exposed to copper
and tributyltin. Aqua. Toxicol. 47: 213-226.
Correia, A.D.,
Livingstone, D.R. & Costa, M.H. 2002. Effects of water-borne copper on metallothonein and
lipid peroxidation in the marine amphipod Gammarus
locusta. Mar. Environ. Res. 54: 357-360.
Czupryn, M. & Falchuk, K. 1990.
Determination of metals in metallothionein preparation by atomic absorption
spectroscopy. Methods Enzymol. 205:
415-418.
de
Astudillo, L.R., Yen, I.C., Agard, J., Bekele, I. & Hubbard, R. 2002. Heavy metals in green mussel (Perna viridis) and oysters (Crassostrea sp.) from Trinidad and
Venezuela
. Arch. Environ. Contam. Toxicol. 42: 410 –415.
Department of Environment (DOE), Ministry
of Science, Technology & the Environment
Malaysia
, 2002. Laporan Alam
Sekitar.
Eduardo, M., Elena, B.K.,
Araceli, D.A., Dulce, M.L.A., Olimpia, C., Nilda, G. & Antonio, A. 2005. Cloning, tissue expression and
metal inducibility of an ubiquitous metallothionein from Panulirus argus. Gene. 361: 140-148.
Frohman,
M.A., Dush, M.K. & Martin, G.R. 1988. Rapid production of full-length cDNAs
from rare transcripts: amplification using a single gene-specific
oligonucleotide primer. Proc. Natl.
Acad. Sci. U.S.A. 85: 8998-9002.
George, S.G. 1992. Biochemical and
cytological assessments of metal toxicity in marine animals. In: W.R, Furness, P.S.
Rainbow (Eds.), Heavy metals in the
marine environment. New York, Plenum Press, pp. 123-142.
Glickman, L.T. 1991. Animals as sentinels
of environmental health hazards.
National
Academy
Press,
Washington.
Jing, G., Li, Y., Xie, L.P. & Zhang R.Q. 2006. Metal accumulation and enzyme
activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comp. Biol. Physiol. 144C: 184-190.
Kägi, J.H.R. & Schäffer, A.
1988. Biochemistry of metallothionein. Biochem. 27: 8515–8909.
Kägi, J.H.R. & Valee, B.L. 1960.
Metallothionein. A cadmium and zinc containing protein from equine renal
cortex. J. Biol. Chem. 235: 3460-3465.
Klaassen,
C.D. & Liu, J. 1998. Induction of metallothionein as an adaptive
mechanism affecting the magnitude and progression of toxicological injury. Environ. Health Perspect. 106:
297–300.
Liang, L.N., He, B., Jiang, G.B., Chen,
D.Y. &
Yao
,
Z.W. 2004. Evaluation of molluscs as biomonitors to investigate heavy metal
contaminations along
Chinese
Bohai, Sea. Sci.
Total Environ. 324: 105-113.
Linde, A.R., Sanchez-Galan, S., Klein, D.,
Garcia-Vasquez, E. & Summer, K.H. 1999. Metallothionein and heavy metals in
brown trout (Salmo trutta) and
European eel (
Anguilla
anguilla): A comparative study. Ecotoxicol. Environ. Safety, 44: 168-173.
Malaysian Food Act & Regulations. 1996. Laws of
Malaysia
.
7th Ed. Kuala Lumpur: MDC Publishers Printers Sdn Bhd. pp.219.
McCarthy, J.F. & Shugart, L.R. 1990. Biomarkers of environmental contamination.
Florida
, Lewis Publishers,
Boca
Raton
, pp. 457.
Mat, I., Maah, M.J. &
Johari, A. 1994. Trace metal
geochemical associations in sediments from culture-bed of Anadara granosa. Mar. Pollut. Bull. 28: 319-323.
Nasci, C., Da Ros, L.,
Nesto, N., Sperni, L., Passarini, F. & Pavoni, B. 2002. Biochemical and histochemical
responses to environmental contaminations in clam, Tapes philippinarum, transplanted to different polluted areas of
Venice Lagoon,
Italy
. Mar. Environ. Res. 50: 425-430.
Nemer, M., Wilkinson, D.G.,
Travaglini, E.C., Sternberg, E.J. & Butt, T.R. 1985. Sea urchin metallothionein sequence: key to
an evolutionary diversity. Proc. Natl.
Acad. Sci. U.S.A. 82: 4992-4994.
Paris-Palacios, S., Biagianti-Risbourg, S.,
Fouley, A. & Vernet, G. 2000. Metallothioneins in liver of Rutilus rutilus exposed to Cu2+:
Analysis by metal summation, SH determination and spectrofluorometry. Comp. Biochem. Physiol. 126C: 113-122.
Rand, G.M. & Petrocelli,
S.R. 1985. Introduction of
fundamentals to aquatic toxicology. Hemisphere Co.,
Washington
, pp. 1-30.
Ringwood, A.H. & Brouwer, M. 1993.
Expression of constitutive and metal-inducible metallothioneins in oyster
embryos (Crassostrea virginica). Comp. Biochem. Physiol. 106B: 523-529.
Thompson, J.D., Higgins, D.G. & Gibson,
T.J. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucl. Acids Res. 22: 4673-4680.
Thomson, J.D., Pirie, B.J.S. & George,
S.G. 1985. Cellular metal distribution in Pacific oyster, Crassostrea gigas (Thun.) determined by quantitative X-ray
microphone analysis. J. Exp. Mar. Biol.
Ecol. 85: 47-45.
Tóth, L., Juhász, M., Varga, T., Csikkel-Szdnoki,
A. & Nemesók, J. 1996. Some effects of CuSO4 in carp. J.
Environ. Sci. Health. 31:
627-635.
Unger
,
M.E.
, Chen, T.T., Murphy, C.M., Vestling, M.M.,
Fenselau, C. & Roesjadi, G. 1991. Primary structure of molluscan
metallothioneins deduced from PCR-amplified cDNA and mass spectrometry of
purified proteins. Biochim. Biophys. Acta. 1074: 371-377.
Vasak, M., & Hasler, D.W.
2000. Metallothioneins: new
functional and structural insights. Curr. Opin. Chem. Biol. 4: 177-183.
WHO. 1982. Toxicological evaluation of certain food
additives and contaminants. Joint FAO/WHO Expert Committee on Food Additives,
WHO Food Additives Series no 17, World Health Organization,
Geneva
, pp. 28–35.
Zorita, I.,
Ortiz-Zarragoitia, M., Soto, M., & Cajaraville, M.P. 2006. Biomarkers in mussels from a copper site
gradient (
Visnes
,
Norway
): An integrated biochemical,
histochemical and histological study. Aqua.
Toxicol. 78S: S109-S116.
*Pengarang untuk surat-menyurat; email: salmij@ukm.my
|