Sains Malaysiana 38(5)(2009): 717–721
Direct Solution of Second-order BVPs by Homotopy-perturbation Method
(Penyelesaian Secara Langsung MNS Berperingkat-Dua Melalui Kaedah Homotopi-usikan)
O. Abdulaziz1, M.S.H. Chowdhury2,
I. Hashim1*
& S. Momani3
1Centre for Modelling & Data
Analysis
School of Mathematical
Sciences, Universiti Kebangsaan Malaysia
43600 UKM Bangi Selangor D.E., Malaysia
2Faculty of Engineering
International Islamic
University Malaysia
Jalan Gombak, 53100 Kuala Lumpur, Malaysia
3Department of Mathematics
Mutah University, P.O. Box 7, Al-Karak, Jordan
Diserahkan: 20 Jun 2008 / Diterima: 20 November
2008
ABSTRACT
In this
paper, systems of second-order boundary value problems (BVPs) are considered. The applicability of the homotopy-perturbation
method (HPM) was extended to obtain exact
solutions of the BVPs directly.
Keywords:
Boundary value problems; homotopy-perturbation method
ABSTRAK
Dalam makalah ini, sistem masalah nilai sempadan (MNS) berperingkat dua dipertimbangkan. Kegunaan kaedah homotopi-usikan (KHU) diperluaskan bagi memperoleh penyelesaian tepat MNS tersebut secara langsung.
Kata kunci: Kaedah homotopi-usikan; masalah nilai sempadan
RUJUKAN
Abbasbandy, S. 2007a. A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method. Chaos Solitons Fractals 31: 257-260.
Abbasbandy, S. 2007b. Application of He’s homotopy perturbation method to functional integral equations. Chaos Solitons Fractals 31: 1243-1247.
Abdulaziz, O., Hashim, I. & Momani, S. 2008. Application of homotopy-perturbation method to fractional IVPs. J. Comput. Appl. Math. 216: 574-584.
Abdulaziz, O., Hashim, I. & Ismail, E.S.
2009. Approximate analytical solution to
fractional modified KdV equations. Mathl. Comput. Model. 49: 136-145.
Chen, S.H., Hu, J., Chen, L. & Wang, C.P. 2005. Existence results for η-point boundary value problem of
second order ordinary differential equations. J. Comput.
Appl. Math. 180: 425-432.
Cheng, X.Y.
& Zhong, C.K. 2005. Existence of positive solutions for a second
order ordinary differential system. J. Math. Anal. Appl. 312: 14-23.
Chowdhury, M.S.H. & Hashim, I. 2007a. Solutions of a class of singular second-order
IVPs by homotopy-perturbation method. Phys. Lett. A 365: 439-447.
Chowdhury, M.S.H. & Hashim, I. 2007b. Solutions of time-dependent Emden-Fowler type equations by homotopy-perturbation method, Phys. Lett.
A 368: 305-313.
Chowdhury, M.S.H. & Hashim, I., Abdulaziz, O. 2007. Application of homotopy-perturbation
method to nonlinear population dynamics models. Phys. Lett. A 368: 251-258.
Dehghan, M. & Saadatmandi, A. 2007. The numerical solution of a nonlinear system
of second-order boundary value problems using the sinc-collocation
method, Mathl. Comput. Model. 46: 1434-1441.
Geng, F.Z. & Cui, M.G. 2007. Solving a nonlinear system of second order
boundary value problems. J. Math. Anal. Appl. 327: 1167-1181.
He, J.H.
1999. Homotopy perturbation technique, Computer
Meth. Appl. Mech. Eng. 178: 257-262.
He, J.H.
2000. A coupling method
of a homotopy technique and a perturbation technique
for non-linear problems. Intern. J. Nonlin. Mech. 35: 37-43.
He, J.H.
2006. Homotopy perturbation method for
solving boundary value problems. Phys. Lett.
A 350: 87-88.
Lomtatidze, A. & Malaguti, L. 2003. On a two-point boundary value problem for the second order
ordinary differential equations with singularities, Nonlinear Anal. 52:
1553-1567.
Lu, J.F.
2007. Variational iteration method for
solving a nonlinear system of second-order boundary value problems. Comput. Math. Appl. 54: 1133-1138.
Mawhin, J. & Tisdell, C. 2003. A note on the uniqueness of solutions to nonlinear, discrete,
vector boundary value problems. Nonlinear Anal. Appl. 1: 789-798.
Odibat, Z.M. 2007. A new modifcation of the homotopy perturbation method for linear and nonlinear
operators. Appl. Math. Comput. 189: 746-753.
Saadatmandi, A., Dehghan, M. & Eftekhari, A. 2009. Application of He’s homotopy perturbation method for
non-linear system of second-order boundary value problems. Nonlin. Analy.: Real World Appl. 10: 1912-1922.
Thompson,
H.B. & Tisdell, C. 2000. Systems of difference equations associated with boundary value
problems for second order systems of ordinary differential equations. J.
Math. Anal. Appl. 248: 333-347.
Thompson,
H.B. & Tisdell, C. 2002. Boundary value problems for systems of difference equations
associated with systems of second-order ordinary differential equations. Appl.
Math. Lett. 15(6): 761-766.
Yusufoglu, E. 2007. Homotopy perturbation method for solving a nonlinear system of second order boundary
value problem, Int. J. Nonlin. Sci. Numer. Simul. 8: 353-358.
*Pengarang untuk surat-menyurat;
email: ishak_h@ukm.my
|