Sains Malaysiana 38(6)(2009): 857–861

 

Pencirian Mikrostruktur Katod La-Sr-Co-Fe-O bagi Sel Fuel Oksida

Pepejal Bersuhu Sederhana (IT-SOFC )

(Microstructure Characterization of La-Sr-Co-Fe-O Cathode for Intermediate

Temperature Solid Oxide Fuel Cell (IT-SOFC))

 

Noorashrina A. Hamid, Andanastuti Muchtar, Wan Ramli Wan Daud* & Norhamidi Muhamad

Institut Sel Fuel, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, D.E., Malaysia

 

Diserahkan: 14 Januari 2009 / Diterima: 27 April 2009

 

ABSTRAK

 

Oksida perovskit La1-xSrxCo0.2Fe0.8O3-δ (LSCF) dengan x = 0.3-0.5 telah dihasilkan melalui kaedah sol-gel. Ia merupakan pengalir berion campuran yang sangat baik sebagai bahan katod untuk sel fuel oksida pepejal bersuhu sederhana (IT-SOFC). Serbuk yang terhasil dicirikan dengan menggunakan teknik pembelauan sinar-X (XRD) dan keputusannya menunjukkan bahawa hablur perovskit yang tulen terhasil sepenuhnya setelah dikalsin pada suhu 900oC. Kesan suhu pensinteran ke atas pelet LSCF dikenal pasti dengan menggunakan Mikroskop Elektron Imbasan (SEM). Keputusan menunjukkan bahawa perovskit LSCF mempunyai keliangan yang optimum sebanyak 30% setelah disinter pada suhu 900 oC. Keliangan optimum ini membolehkan tindak balas penurunan oksigen berlaku dengan lebih mudah. Analisis FTIR yang dijalankan menunjukkan kehadiran ikatan Fe-O dalam serbuk LSCF dan tiada bendasing yang wujud dalam serbuk LSCF.

 

Kata kunci: Lantanum strontium kobalt ferit oksida (LSCF); pencirian mikrostruktur; suhu pensinteran; sel fuel oksida pepejal (SOFC)

 

ABSTRACT

 

Perovskite oxide La1-xSrxCo0.2Fe0.8O3-δ (LSCF) with x = 0.3-0.5, an excellent mixed-ionic conductor that can be used as cathode material for the intermediate temperature solid oxide fuel cell (IT-SOFC) has been developed using the sol-gel method. The resulting powder was characterised using X-Ray Diffraction (XRD) which showed that pure crystals of perovskite were fully formed after calcination at 900 oC. The effect of sintering temperature on the microstructure was observed using Scanning Electron Microscopy (SEM) analysis. The results showed that the LSCF perovskite have the optimum porosity of 30% after sintered at 900 oC and thus enable the oxygen reduction occurred easily. FTIR results revealed that only Fe-O bond exists in the LSCF powder and no impurities detected.

 

Keywords: Lanthanum strontium cobalt ferrite (LSCF); microstructure characterisation; sintering temperature; solid oxide fuel cell (SOFC)

 

RUJUKAN

 

Baqué, L. & Serquis, A. 2007. Microstructural characterization of La0.4Sr0.6Co0.8Fe0.2O3–δ films deposited by dip coating. Applied Surface Science 254: 213-218.

Brinker, C.J. 1990. Sol-gel science, the physics and chemistry of sol-gel processing. New York: Academic Press.

Eguchi, K. 1997. Ceramic Materials Containing Rare Earth Oxides for Solid Oxide Fuel Cells. Journal of Alloys and Compound 250: 486.

Jiang, S.P., Love, J.G., Zhang, J.P., Hoang, M., Ramprakash, Y., Hughes, A.E. & Badwal, S.P.S. 1999. The electrochemical performance of LSM/zirconia–yttria interface as a function of a-site non-stoichiometry and cathodic current treatment. Solid State Ionics 121 : 1-10.

Jin, W., Li, S., Huang, P., Xu, N. & Shi, J. 2000. Fabrication of La0.8Sr0.2Co0.8Fe0.2O3 mesoporous membrane on porous support from polymeric precursors. Journal of Membrane Science 170: 9-17.

Leng, Y.J., Chan, S.H. & Liu, Q.L. 2008. Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte International Journal of Hydrogen Energy 33: 3808-3817.

Li, K., Wu, F., Wang, D., Xie, T. & Li, T. 2001. Electron behavior and photoelectric gas-sensitive characters of nanocrystalline La1-xSrxFeO3. Materials Chemistry and Physics 71: 34-39.

Liu, S., Qian, X. & Xioa, J. 2007. Synthesis and characterization of La0.8Sr0.2Co0.5Fe0.5O3± δ nanopowders by microwave assisted sol-gel route. Journal of Sol-Gel Science Technology 44: 187-193.

Mogenson, M., Jensen, K. V., Jorgensen, M. J. & Primdahl, S. 2002. Progress in Understanding Solid Oxide Fuel Cells Electrodes. Solid State Ionics 150: 123.

Murata, K., Fukui, T., Abe, H., Naito, M. & Nogi, K. 2005. Morphology control of La(Sr)Fe(Co)O3-a cathodes for IT-SOFCs. Journal of Power Sources 145: 257-261.

Qiu, L., Ichikawa, T., Hirano, A., Imanishi, N. and Takeda, Y.,2002. Ln1−xSrxCo1−yFeyO3−δ (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics 158: 55-65.

Tai, L. W., Nasrallah, M. M., Anderson, H. U., Sparlin, D. M., Sehlin, S. R. 1995. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid State Ionics 76: 259-271.

Stoichniol, G., Syskakis, E., Naoumidis, A. 1995. Chemical compatibility between strontium-doped lanthanum manganite and yttria-stabilized zirconia. Journal of American Ceramic Society 78: 929-932.

Wenshi, P. & Gaokui, L. 1982. Theoretical analyses of the infrared spectrum of baiyuneboite-(Ce). Chinese Journal of Geochemistry 9: 137-142.

Yamamoto, O., Takeda, Y., Kanno, R. & Noda, M. 1987. Perovskite-type oxides as oxygen electrodes for high temperature oxide FC. Solid State Ionics 22: 241-246.

 

 

*Pengarang untuk surat-menyurat; email: wramli@vlsi.eng.ukm.my

 

 

 

sebelumnya