Sains Malaysiana 38(6)(2009): 901–909
Peningkatan Keupayaan Pembangunan Produk Baru Melalui Pemodelan Matematik
(Improving
New Product Development using a Mathematical Model)
Muhammad Marsudi, Dzuraidah Abdul Wahab
Lily Amelia & Che Hassan Che Haron*
Jabatan Kejuruteraan Mekanik dan Bahan
Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor
D.E. Malaysia
Diserahkan: 4 November 2008 / Diterima: 18 Febuari 2009
ABSTRAK
Kertas ini membincangkan pembangunan suatu alat sokongan pembuat keputusan dalam mereka bentuk produk berasaskan teori baris-gilir yang dikaitkan dengan maklumat masa kitar pembuatan. Dengan penggunaan alat sokongan ini, kesan reka bentuk sesuatu produk terhadap parameter kapasiti dan masa kitar pembuatan sesuatu sistem pembuatan sedia ada dapat ditentukan. Aplikasi alat sokongan ini membolehkan kumpulan pembangunan produk membangunkan produk sebenar pada masa yang singkat, meminimumkan kos pembangunan serta mengurangkan keperluan untuk mereka bentuk semula produk. Alat sokongan ini telah diaplikasikan pada sebuah industri automotif tempatan dan hasil kajian menunjukkan bahawa alat sokongan tersebut telah berjaya melakukan analisis masa kitar dan tahap penggunaan pada sistem pembuatan sedia ada. Pada jumlah keluaran 44 komponen/jam dan saiz sesekumpul 80, hasil analisis menunjukkan tahap penggunaan pada 98% dengan masa kitar 17.8 jam bagi pemprosesan gabungan produk yang terdiri daripada komponen dengan reka bentuk baru dan reka bentuk sedia ada.
Kata kunci: Kapasiti pengeluaran; masa kitar; teori baris gilir; reka bentuk produk; sistem pembuatan
ABSTRACT
This paper
discusses the development of a decision support tool based on the queuing
theory which was linked to manufacturing cycle time information. With the use
of this tool, the effects of product design to the capacity and manufacturing
cycle time of an existing manufacturing system can be determined. The decision
support tool enabled the product design team to develop products in a shorter
lead time with reduced cost, while minimising redesign during the design development process. The tool has been applied to a
local automotive industry and results from the study showed that the tool has
been successful in analysing cycle time and utilisation of the existing manufacturing system. For a
throughput of 44 parts/hour and batch size 80, results from the analysis show a utilisation rate of 98% and cycle time of 17.8 hours,
for the production of mixed products that comprised parts with new and existing
design.
Keywords:
Production capacity; cycle time; queuing theory; product design; manufacturing
system
RUJUKAN
Ahmadi, R. & Wang, R.H. 1999. Managing development risk in product design
process. Operations Research 47(2): 235-246.
Balachandra, R. 1991. Some strategic aspects of faster new product introduction. Engineering Management Conference 226-229.
Bermon, S., Feigin, G. & Hood, S. 1995. Capacity
analysis of complex manufacturing facilities. Proceedings of the 34th
Conference on Decision and Control 1935-1940.
Bralla, J.G. 1996. Design for Excellence. USA: McGraw-Hill Inc.
Burhanuddin S. & Randhawa, S.U. 1992. A framework for
integrating manufacturing process design and analysis. Computers and
Industrial Engineering 23(1-4): 27-30.
Chincholkar, M.M. 2002. Design for Production: Using Manufacturing Cycle Time Information to Improve
Product Development. Maryland: Institute for Systems Research.
Elhafsi, M. & Rolland, E. 1999. Negotiating price and delivery date in a stochastic
manufacturing environment. IIE Transactions 31: 255-270.
Govil, M. 1999.
Integrating product design and production: Designing for time-to- market. Tesis PhD. USA: University of Maryland.
Hopp, W.J. & Spearman, M.L. 2000. Factory Physics. Second edition. Boston: Irwin/McGraw Hill.
Ingress Precision. 2004. Ahead of Technology. Cetakan Brosur.
Koo, P.H., Moodie, C.L. & Tavalage, J.J. 1995. A spreadsheet model approach for integrating static capacity
planning and stochastic queuing models. International Journal of
Production Research 3(5): 1369-1385.
Singh, N. 1996. Systems
Approach to Computer-integrated Design and Manufacturing. New York: John
Wiley and Sons.
Soundar, P. & Bao, H.P. 1994. Concurrent design of products for
manufacturing system performance. Proceedings of the IEEE 1994
International Engineering Management Conference 233-240.
Suri, R. & Diehl, G.W. 1985. MANUPLAN, A precursor to simulation for
complex manufacturing systems. Proceeding of the
Winter Simulation Conference 411-428.
Taylor, D.G., English, J.R. & Graves, R.J. 1994. Designing new products: Compatibility with existing product
facilities and anticipated product mix. Integrated Manufacturing Systems 5(4/5):
13-21.
Vollmann, T.E., Berry, W.L. & Whybark,
D.C. 1997. Manufacturing
Planning and Control Systems. Fourth
edition. New York: Irwin/McGraw-Hill.
Wei, Y. 2001. Concurrent design for optimal
quality and cycle Time. Tesis PhD. Massachusets: Department of Mechanical Engineering,
Massachusetts Institute of Technology.
Wei, Y. & Thornton, A.C. 2002. Concurrent design for optimal production
performance. Paper DETC2002/DFM-34163 in CD-ROM Proceedings of 2002
ASME Design Engineering Technical Conference.
*Pengarang untuk surat-menyurat; email: chase@vlsi.eng.ukm.my
|