Sains Malaysiana 39(2)(2010): 249–259
Kesan Wap Air Terhadap Pengoksidaan
Berkitar pada Aloi Fe-Cr
(Water Vapour Effects of Cyclic Oxidation on Fe-Cr
Alloys)
N.K. Othman*
Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor D.E., Malaysia
N.Othman
Bahagian Teknologi Industri, Agensi
Nuklear Malaysia Bangi
43000 Kajang, Selangor D.E., Malaysia
J. Zhang & D.J. Young
School of Materials Science &
Engineering
University of New South Wales, 2052,
Sydney Australia
Diserahkan:
28 Mei 2009 / Diterima: 25 Ogos 2009
ABSTRAK
Aloi Fe-Cr (Cr: 9-30 brt%) telah dikenakan pengoksidaan berkitar
dalam Ar-20%O2, Ar-20%O2-5%H2O dan Ar-10%H2-5%H2O (tekanan separa oksigen, pO2 = 1.1 ¥ 10-16atm), pada suhu 950oC. Pengukuran perubahan berat pengoksidaan menunjukkan secara
umunnya bahawa peningkatan kandungan Cr dalam aloi akan mengurangkan kadar
pengoksidaan. Untuk aloi Cr≤17%, ‘pengoksidaan pemecahan’ telah dapat
diperhatikan. Untuk aloi Cr≥25%, penambahan berat adalah sangat rendah
disebabkan oleh pembentukan lapisan Cr2O3. Penambahan 5%H2O kepada Ar-20%O2 dapat mempercepatkan lagi kadar
pengoksidaan pada aloi yang mempunyai Cr≤20%. Walau bagaimanapun, kesan
pencepatan ini tidak berlaku pada aloi yang mempunyai kandungan Cr yang tinggi.
Analisis XRD menunjukkan aloi yang mempunyai
kandungan Cr≤20%, wustit dan spinel terbentuk pada pO2 yang rendah, manakala pada pO2 yang tinggi, hematit, oksida besi dan
spinel didapati terbentuk. Untuk aloi yang mempunyai kandungan Cr yang tinggi,
hanya Cr2O3 dapat dikesan. Analisis keratan rentas menunjukkan bahawa spinel
terbentuk melalui pengoksidaan dalaman. Ketebalan dan saiz zon oksida dalaman
bertambah dengan bertambahnya kandungan Cr. Lapisan kromium oksida tunggal yang
tumpat dapat diperhatikan apabila kandungan Cr melebihi 25%. Kerak oksida yang
terbentuk di dalam wap air adalah lebih poros dan kurang padat berbanding kerak
yang terbentuk dalam keadaan oksigen kering. Kesan wap air ke atas peningkatan
pengoksidaan aloi Fe-Cr telah dibincangkan daripada aspek interaksi
gas-pepejal.
Kata kunci: Aloi Fe-Cr; Cr2O3; pengoksidaan berkitar; wap air
ABSTRACT
Fe-Cr alloys (Cr: 9-30 wt%) were subjected to cyclic oxidation
in Ar-20%O2, Ar-20%O2-5%H2O and Ar-10%H2-5%H2O (partial pressure of oxygen, pO2 = 1.1 ¥ 10-16atm). Oxidation weight change measurement showed that in
general, increasing Cr content reduced the oxidation rate. At Cr < 17%Cr, breakaway oxidation was observed. However, for Cr > 25%, the weight gain became very low due to formation of
Cr2O3 layer. Adding 5%H2O to Ar-20%O2 accelerated
the oxidation rate of alloys with Cr < 20%. However,
this accelerating effect did not appear in high chromium content alloys. XRD analysis showed that for alloys with Cr
< 20%, wustite and spinel were formed at low pO2, while at high pO2, hematite, iron oxide and spinel were formed. For high Cr
content alloy only Cr2O3 was detected. Cross-section analysis showed that the spinel was
formed by internal oxidation. The thickness and size of this internal oxide
zone increased with increasing Cr content. A dense chromia layer was observed
when the Cr content was above 25%. The oxides scales formed in water vapour
were more porous and less compact than the scale formed in dry oxygen. The
accelerating effect of water vapour on Fe-Cr oxidation is discussed in terms of
gas-solid interactions.
Keywords: Cr2O3; cyclic oxidation; Fe-Cr alloy; water
vapour
RUJUKAN
Asteman, H., Svensson, J.E., Johansson, L.G., & Norell, M.
1999. Indication of chromium oxide hydroxide evaporation during oxidation of
304L at 873 K in the presence of 10% water vapor. Oxidation of Metals 52:
95-111.
Asteman, H., Svensson, J.E., Norell, M., Johansson, L.G. 2000. Influence
of water vapor and flow rate on the high-temperature oxidation of 304L; Effect
of chromium oxide hydroxide evaporation. Oxidation of Metals 54: 11-26.
Asteman, H., Segerdahl, K., Svensson, J.E. & Johansson, L.
G. 2001. The influence of water vapour on the corrosion of chromia forming
steels. Materials Science Forum 369-372: 277-286.
Asteman, H., Svensson, J.E. & Johansson, L.G. 2004. Effect
of Water-Vapor-Induced Cr Vaporization on the Oxidation of Austenitic Stainless
Steels at 700 and 900¡C. Journal of the Electrochemical Society 151(3):
B141-B150
Asteman, H., Svensson, J.E. &. Johansson, L.G. 2002.
Evidence for chromium evaporation influencing the oxidation of 304L: The effect
of temperature and flow rate. Oxidation of Metals 57: 93-216.
Ehlers, J., Young, D.J., Smaardijk, E.J., Tyagi, A.K., Penkalla,
H.J., Singheiser, L. & Quaddakers, W.J. 2006. Enhanced oxidation of the 9%
Cr steel P91 in water vapour containing environment Corrosion Science 48:
3428-3454.
Evans, H.E., Donaldson, A.T. & Gilmour, T.C. 1999.
Mechanisms of breakaway oxidation and application to a chromia-forming steel. Oxidation
of Metals 52: 379-402.
Fuji, C.T & Meussner, R.A. 1964. The mechanisms of the
high-temperature oxidation of iron-chromium alloys in water vapour. Journal
of the Electrochemical Society 11: 1215-1218.
Henry, S., Galerie, A. & Antoni, L. 2001. Abnormal oxidation
of stabilized ferritic stainless steels in water vapour. Materials Science
Forum 369-372: 353-360.
Ikeda, Y. & Nii, K. 1978. Microcrack generation and its
healing in the oxide scale formed on Fe-Cr alloys. Oxidation of Metals 12(6):
487-502.
Jonsson, T., Canovic, S., Liu, F., Asteman, H., Svennson, J.E.,
Johansson, L.G. & Halvarsson, M. 2005. Microstructural invenstigation of
the water vapour on the oxidation of alloy 353 MA in oxygen at 700 and 900oC. Materials
at High Temperature. Science Reviews 22(3/4): 231-243.
Lide, D.R. 1997. CRC Handbook of Chemistery and Physics.
78th Florida:
CRC Press
Monteiro, M.J & Rizzo, F.C. 2006. Effect of chromium content
on the oxidation behaviour of high-speed steels under dry and moist air
environments. Materials Science Forum 522-523: 171-180.
Moon, C.O & Lee, S.B. 1993. Analysis on failures of
protective-oxide layers and cyclic oxidation. Oxidation of Metals 39:
1-13.
Nickel, H., Wounters, Y., Thiele, M., Quadakkers, W.J. &
Fresenius. 1998. The effect of water vapor on the oxidation behavior of 9%Cr
steels in simulated combustion gases. J. Anal. Chem. 361: 540-544.
Peraldi, R. &. Pint, B.A. 2004. Effect of Cr and Ni contents
on the oxidation behavior of ferritic and austenitic model alloys in air with
water vapor. Oxidation of Metals 61: 463-483.
Poquillon, D. & Monceau, D. 2003. Application of a simple
statistical spalling model for the analysis of high-temperature,
cyclic-oxidation kinetics data. Oxidation of Metals 59: 409-431.
Rahmel, A. & Tobolski, J. 1965. Influences of water vapor
and carbon dioxide on the oxidation of iron in oxygen at high temperature. Corrosion
Science 5: 333-346.
Stanislowski, M., Wessel, E., Hilpert, K., Markus, T. &
Singheiser, L. 2007. Chromium Vaporization from High-Temperature Alloys I.
Chromia-Forming Steels and the Influence of Outer Oxide Layers. Journal of
the Electrochemical Society 154(4): 295-306.
Surman, P.L. & Castle, J.E. 1969. Gas phase transport in the
oxidation of Fe and steel. Corrosion Science 9: 771-777.
Young, D.J & Pint, B.A. 2006. Chromium volatilization rates
from Cr2O3 scales into flowing gases containing water vapour. Oxidation
of Metals 66: 137-153.
Zurek, J., Michalik M., Schmitz, F., Kern, T.U., Singheiser, L.
& Quadakkers, W.J. 2005. The effect of water-vapor content and gas flow
rate on the oxidation mechanism of a 10%Cr-Ferritic steel in Ar-H2O mixtures. Oxidation
of Metals 63(5/6): 401-422.
*Pengarang untuk surat-menyurat; email: insan@ukm.my