Sains Malaysiana 39(2)(2010): 267–273
Preparation and Characterization of Calcium Phosphate
Nanorods using Reverse Microemulsion and Hydrothermal Processing Routes
(Penyediaan dan Pencirian Nanorod Kalsium Fosfat melalui
Kaedah Microemulsi Songsang dan Hidroterma)
H.N. Lim* & A. Kassim
Chemistry Department, Faculty of
Science, Universiti Putra Malaysia
43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
N.M. Huang
Solid State Physics Research
Laboratory, Physics Department, Faculty of Science
University of Malaya, 50603 Kuala
Lumpur, Malaysia
Diserahkan: 07 Oktober 2008 / Diterima:
14 Ogos 2009
ABSTRACT
Brushite (BR) and
hydroxyapatite (HA) nanoparticles were fabricated through
reverse microemulsion and hydrothermal processing route, respectively. The
processing routes influenced nucleation and crystal growth although both
methods resulted in nanorods formation. The calcium-to-phosphate ratio was
1.67, similar to that of natural bone and teeth. X-ray diffraction patterns
revealed that the nanorods possessed almost pure crystal phase with negligible
second phase. The ratio of particle length-to-width of BR and HA were approximately 3 and 4, respectively. To mimic the natural
bone, chitosan/brushite (CTS/BR) and
chitosan/hydroxyapatite (CTS/HA) nanocomposite
scaffolds were prepared through rapid freeze-drying technique. The compressive
strength of CTS/BR and CTS/HA nanocomposite scaffolds was compared for the first time. The
compression test revealed that both the nanocomposite scaffolds exhibited
reasonably high compressive strength of approximately 7 MPa. This value falls
in the high-end range of cancellous bone’s compressive strength, with the
compressive strength of CTS/HA 0.88 MPa more
than CTS/BR.
Keywords: Calcium phosphate nanoparticles; compressive strength;
crystal growth; hydrothermal; microemulsion
ABSTRAK
Nanozarah brushit (BR) dan nanozarah hidroksiapatoit (HA) masing-masing disediakan melalui kaedah mikroemulsi songsang dan
hidroterma. Kedua-dua kaedah penyediaan nanozarah mempengaruhi penukleusan dan
pertumbuhan hablur walaupun kaedah-kaedah tersebut menghasilkan nanorod. Nisbah
kalsium kepada fosfat ialah 1.67, serupa dengan nisbah tulang dan gigi asli.
Corak pembelauan sinar-X menunjukkan kedua-dua nanorod itu memiliki fasa hablur
yang hampir tulen dengan kehadiran fasa kedua yang boleh diabaikan. Nisbah
panjang kepada lebar zarah bagi BR dan HA adalah masing-masing lebih kurang 3 dan
4. Untuk meniru tulang asli, rangka nanokomposit kitosan/brushit (CTS/BR) dan kitosan/hidroksiapatit (CTS/HA) disediakan menerusi teknik sejuk beku
pantas. Kekuatan mampatan rangka nanokomposit CTS/BR dan CTS/HA telah
dibandingkan buat pertama kali. Ujian mampatan menunjukkan kekuatan mampatan
yang memuaskan bagi kedua-dua rangka nanokomposit, iaitu lebih kurang 7 MPa.
Nilai ini berada dalam julat kekuatan di sebelah hujung tinggi bagi tulang
kancelus, dengan kekuatan mampatan CTS/HA 0.88 MPa melebihi CTS/BR.
Kata kunci: hidroterma; kekuatan mampatan; mikroemulsi;
nanozarah kalsium fosfat; pertumbuhan hablur
RUJUKAN
Baksh, D. 2000. Design strategies for 3-dimensional in vitro
bone growth in tissue-engineering scaffolds. In Davies, J. E. (ed.). Bone
engineering p. 488-495. Toronto: Em Square.
Bohner, M. 2000. Calcium orthophosphates in medicine: from
ceramics to calcium phosphate cements. Injury 31: 37-47.
Byrappa, K. 2001. Handbook of Hydrothermal Technology. LLC:
Noyes Publications/ William Andrew Publishing.
Dean-Mo, L. 1997. Fabrication of hydroxyapatite ceramics with
controlled porosity. Journal of Materials Science: Materials in Medicine 8:
227-232.
Ding, S.J. 2007. Biodegradation behavior of chitosan/calcium
phosphate composites. Journal of Non-Crystalline Solids 353: 2367-2373.
Fendler, J.H. 1987. Atomic and molecular clusters in membrane
mimetic chemistry. Chemistry Review 87: 877-899.
Gbureck, U., Dembski, S., Thull, R. & Barralet, J.E. 2005.
Factors influencing calcium phosphate cement shelf-life. Biomaterials 26:
3691-3697.
Glatter, O., Orthaber, D. Stradner, A., Scherf, G., Fanun, M.,
Garti, N., Clement, V. & Leser, M.E. 2001. Sugar-ester nonionic
microemulsion: structural characterization Journal of Colloid Interface
Science 241: 215-225.
Gray, D.H., Hu, S., Juang, E. & Gin, D.L. 1997. Highly
Ordered Polymer–Inorganic Nanocomposites via Monomer Self-Assembly: In Situ
Condensation Approach. Advance Materials 9: 731-736.
Hench, L.L. 1991. Bioceramics: from concept to clinic. Journal
of American Ceramic Society 74: 1487-1510.
Hench, L.L. 1993. Bioceramic: from concepts to clinics. American
Ceramic Society Bulletin 72: 93-98.
Jarcho, M. 1981. Calcium phosphate ceramics as hard tissue
prosthesis. Clinical Orthopaedics and Related Research 157: 259-278.
Jin, Q. M., Takita, H. & Kohgo, T. 2000. Effects of the
geometry of hydroxyapatiteas cell substratum in BMP-induced ectopic bone
formation. Journal of Biomedical Materials Research 51: 491-1.
Knudsen, F.P. 1959. Dependence of mechanical strength of brittle
polycrystalline specimens on porosity and grain size. Journal of American
Ceramic Society 42: 376-387.
Le Huec, J.C., Schaeverbeke, T., Clement, D. 1995. Influence of
porosity on the mechanical resistance of hydroxyapatite ceramics under
compressive stress. Biomaterials 16: 113-8.
Legeros, L.Z. 1998. Calcium phosphate materials in restorative
dentistry: a review. Advances in Dental Research 2: 164-183.
Levi-Kalisman, Y., Addadi, L. & Weiner, S. 2001. Structure
of the nacreous layer of a bivalve mollusk shell examined in the hydrated state
using cryo-TEM. Journal of Structural Biology 135: 8-17.
Lowenstam, H.A., Weiner, S., Mann, S., Webb, J. & Williams,
R. J. P. 1989. On Biomineralization New York: VCH Press.
Lu, X., Wang, Y., Wang, J., Qu, S., Weng, J., Xin, R. &
Leng, Y. 2006. Calcium phosphate crystal growth under controlled environment
through urea hydrolysis. Journal Crystal Growth 297: 396-402.
Navarro, M., del Velle, S., Martinez, S., Zeppetelli, S.,
Ambrosio, L., Planell, J.A. & Ginebra, M.P. 2004. New macroporous calcium
phosphate glass ceramic for guided bone regeneration. Biomaterials 25:
4233-4241.
Nilsson, M., Fernandez, E., Sarda, S., Lidgren, L. &
Planell, J. A. 2002. Characterization of a novel calcium phosphate/sulphate
bone cement. Journal of Biomedical Materials Research 61: 600-607.
Paul, B.K. & Moulik S. P. 1997. Microemulsions: an overview. Journal of Dispersion Science and Technology 18: 301-367.
Paul, W. & Sharma, C.P. 1999. Development of porous
spherical hydroxyapatite granules: application towards protein delivery. Journal
of Materials Science 10: 383-388.
Petch, N.J. 1953. The cleavage strength of polycrystals. Journal
of the Iron and Steel Institute 174: 25-28.
Pileni, M.P. 2006. Reverse micelles used as templates: a new
understanding in the nanocrystal growth of silver and copper nanocrystals by
using hydrazine as redusing agent. Journal of Experimental Nanoscience 1:
13-27.
Ramay, H.R.R. & Zhang, M. 2004. Biphasic calcium phosphate
nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 25: 5171-5180.
Rice, R.W. 1993. Comparison of stress concentration versus
minimum solid area based mechanical property—porosity relations. Journal of
Materials Science 28: 2187-2190.
Theiss, F., Apelt, D., Brand, B., Kutter, A., Zlinszky, K.,
Bohner, M., Matter, S., Frei, C., Auer, J. A. & von Rechenberg, B. 2005.
Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 26: 4383-4394.
Vallet-Regi, M. & Gonzalez-Calbet, J.M. 2004. Calcium
phosphates as substitution of bone tissues. Progress in Solid State
Chemistry 32: 1-31.
Walsh, D., Kingston, J.L., Heywood, B.R. & Mann, S. 1993.
Influence of monosaccharides and related molecules on the morphology of
hydroxyapatite. Journal of Crystal Growth 133: 1-12.
Wang, Y.J., Lai, C., Wei, K. & Tang, S.Q. 2005. Influence of
temperature, ripening time, and cosurfactant on solvothermal synthesis of
calcium phosphate nanobelts. Materials Letters 59: 1098-1104.
Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J. & X. Wang.
2006. Hydrothermal synthesis of hydroxyapatite nanopowders using cationic
surfactant as a template. Materials Letters 60: 1484-1487.
Weiner, S., Wagner, H.D. 1998. The material bone:
structure-mechanical function relations, Annual Review of Materials Science 28:
271-298.
Xu, H.H.K. & Simon Jr, C.G. 2005. Fast setting calcium
phosphate-chitosan scaffold: mechanical properties and biocompatibility Biomaterials 26: 1337-1348.
Zhao, F., Yin, Y., Lu, W.W., Leong, J.C., Zhang, W., Zhang, J.,
Zhang, M. & Yao K. 2002. Preparation and histological evaluation of
biomimetic three-dimensional hydroxyapatite/chitosan gelatin network composite
scaffolds. Biomaterials 23: 3227-3234.
*Pengarang untuk surat-menyurat; email: janet_limhn@yahoo.com