Sains Malaysiana 39(2)(2010): 267–273

 

Preparation and Characterization of Calcium Phosphate Nanorods using Reverse Microemulsion and Hydrothermal Processing Routes

(Penyediaan dan Pencirian Nanorod Kalsium Fosfat melalui Kaedah Microemulsi Songsang dan Hidroterma)

 

H.N. Lim* & A. Kassim

Chemistry Department, Faculty of Science, Universiti Putra Malaysia

43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

N.M. Huang

Solid State Physics Research Laboratory, Physics Department, Faculty of Science

University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Diserahkan: 07 Oktober 2008 / Diterima: 14 Ogos 2009

 

ABSTRACT

 

Brushite (BR) and hydroxyapatite (HA) nanoparticles were fabricated through reverse microemulsion and hydrothermal processing route, respectively. The processing routes influenced nucleation and crystal growth although both methods resulted in nanorods formation. The calcium-to-phosphate ratio was 1.67, similar to that of natural bone and teeth. X-ray diffraction patterns revealed that the nanorods possessed almost pure crystal phase with negligible second phase. The ratio of particle length-to-width of BR and HA were approximately 3 and 4, respectively. To mimic the natural bone, chitosan/brushite (CTS/BR) and chitosan/hydroxyapatite (CTS/HA) nanocomposite scaffolds were prepared through rapid freeze-drying technique. The compressive strength of CTS/BR and CTS/HA nanocomposite scaffolds was compared for the first time. The compression test revealed that both the nanocomposite scaffolds exhibited reasonably high compressive strength of approximately 7 MPa. This value falls in the high-end range of cancellous bone’s compressive strength, with the compressive strength of CTS/HA 0.88 MPa more than CTS/BR.

 

Keywords: Calcium phosphate nanoparticles; compressive strength; crystal growth; hydrothermal; microemulsion

 

ABSTRAK

 

Nanozarah brushit (BR) dan nanozarah hidroksiapatoit (HA) masing-masing disediakan melalui kaedah mikroemulsi songsang dan hidroterma. Kedua-dua kaedah penyediaan nanozarah mempengaruhi penukleusan dan pertumbuhan hablur walaupun kaedah-kaedah tersebut menghasilkan nanorod. Nisbah kalsium kepada fosfat ialah 1.67, serupa dengan nisbah tulang dan gigi asli. Corak pembelauan sinar-X menunjukkan kedua-dua nanorod itu memiliki fasa hablur yang hampir tulen dengan kehadiran fasa kedua yang boleh diabaikan. Nisbah panjang kepada lebar zarah bagi BR dan HA adalah masing-masing lebih kurang 3 dan 4. Untuk meniru tulang asli, rangka nanokomposit kitosan/brushit (CTS/BR) dan kitosan/hidroksiapatit (CTS/HA) disediakan menerusi teknik sejuk beku pantas. Kekuatan mampatan rangka nanokomposit CTS/BR dan CTS/HA telah dibandingkan buat pertama kali. Ujian mampatan menunjukkan kekuatan mampatan yang memuaskan bagi kedua-dua rangka nanokomposit, iaitu lebih kurang 7 MPa. Nilai ini berada dalam julat kekuatan di sebelah hujung tinggi bagi tulang kancelus, dengan kekuatan mampatan CTS/HA 0.88 MPa melebihi CTS/BR.

 

Kata kunci: hidroterma; kekuatan mampatan; mikroemulsi; nanozarah kalsium fosfat; pertumbuhan hablur

 

RUJUKAN

 

Baksh, D. 2000. Design strategies for 3-dimensional in vitro bone growth in tissue-engineering scaffolds. In Davies, J. E. (ed.). Bone engineering p. 488-495. Toronto: Em Square.

Bohner, M. 2000. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31: 37-47.

Byrappa, K. 2001. Handbook of Hydrothermal Technology. LLC: Noyes Publications/ William Andrew Publishing.

Dean-Mo, L. 1997. Fabrication of hydroxyapatite ceramics with controlled porosity. Journal of Materials Science: Materials in Medicine 8: 227-232.

Ding, S.J. 2007. Biodegradation behavior of chitosan/calcium phosphate composites. Journal of Non-Crystalline Solids 353: 2367-2373.

Fendler, J.H. 1987. Atomic and molecular clusters in membrane mimetic chemistry. Chemistry Review 87: 877-899.

Gbureck, U., Dembski, S., Thull, R. & Barralet, J.E. 2005. Factors influencing calcium phosphate cement shelf-life. Biomaterials 26: 3691-3697.

Glatter, O., Orthaber, D. Stradner, A., Scherf, G., Fanun, M., Garti, N., Clement, V. & Leser, M.E. 2001. Sugar-ester nonionic microemulsion: structural characterization Journal of Colloid Interface Science 241: 215-225.

Gray, D.H., Hu, S., Juang, E. & Gin, D.L. 1997. Highly Ordered Polymer–Inorganic Nanocomposites via Monomer Self-Assembly: In Situ Condensation Approach. Advance Materials 9: 731-736.

Hench, L.L. 1991. Bioceramics: from concept to clinic. Journal of American Ceramic Society 74: 1487-1510.

Hench, L.L. 1993. Bioceramic: from concepts to clinics. American Ceramic Society Bulletin 72: 93-98.

Jarcho, M. 1981. Calcium phosphate ceramics as hard tissue prosthesis. Clinical Orthopaedics and Related Research 157: 259-278.

Jin, Q. M., Takita, H. & Kohgo, T. 2000. Effects of the geometry of hydroxyapatiteas cell substratum in BMP-induced ectopic bone formation. Journal of Biomedical Materials Research 51: 491-1.

Knudsen, F.P. 1959. Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. Journal of American Ceramic Society 42: 376-387.

Le Huec, J.C., Schaeverbeke, T., Clement, D. 1995. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 16: 113-8.

Legeros, L.Z. 1998. Calcium phosphate materials in restorative dentistry: a review. Advances in Dental Research 2: 164-183.

Levi-Kalisman, Y., Addadi, L. & Weiner, S. 2001. Structure of the nacreous layer of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. Journal of Structural Biology 135: 8-17.

Lowenstam, H.A., Weiner, S., Mann, S., Webb, J. & Williams, R. J. P. 1989. On Biomineralization New York: VCH Press.

Lu, X., Wang, Y., Wang, J., Qu, S., Weng, J., Xin, R. & Leng, Y. 2006. Calcium phosphate crystal growth under controlled environment through urea hydrolysis. Journal Crystal Growth 297: 396-402.

Navarro, M., del Velle, S., Martinez, S., Zeppetelli, S., Ambrosio, L., Planell, J.A. & Ginebra, M.P. 2004. New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials 25: 4233-4241.

Nilsson, M., Fernandez, E., Sarda, S., Lidgren, L. & Planell, J. A. 2002. Characterization of a novel calcium phosphate/sulphate bone cement. Journal of Biomedical Materials Research 61: 600-607.

Paul, B.K. & Moulik S. P. 1997. Microemulsions: an overview. Journal of Dispersion Science and Technology 18: 301-367.

Paul, W. & Sharma, C.P. 1999. Development of porous spherical hydroxyapatite granules: application towards protein delivery. Journal of Materials Science 10: 383-388.

Petch, N.J. 1953. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute 174: 25-28.

Pileni, M.P. 2006. Reverse micelles used as templates: a new understanding in the nanocrystal growth of silver and copper nanocrystals by using hydrazine as redusing agent. Journal of Experimental Nanoscience 1: 13-27.

Ramay, H.R.R. & Zhang, M. 2004. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 25: 5171-5180.

Rice, R.W. 1993. Comparison of stress concentration versus minimum solid area based mechanical property—porosity relations. Journal of Materials Science 28: 2187-2190.

Theiss, F., Apelt, D., Brand, B., Kutter, A., Zlinszky, K., Bohner, M., Matter, S., Frei, C., Auer, J. A. & von Rechenberg, B. 2005. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 26: 4383-4394.

Vallet-Regi, M. & Gonzalez-Calbet, J.M. 2004. Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry 32: 1-31.

Walsh, D., Kingston, J.L., Heywood, B.R. & Mann, S. 1993. Influence of monosaccharides and related molecules on the morphology of hydroxyapatite. Journal of Crystal Growth 133: 1-12.

Wang, Y.J., Lai, C., Wei, K. & Tang, S.Q. 2005. Influence of temperature, ripening time, and cosurfactant on solvothermal synthesis of calcium phosphate nanobelts. Materials Letters 59: 1098-1104.

Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J. & X. Wang. 2006. Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Materials Letters 60: 1484-1487.

Weiner, S., Wagner, H.D. 1998. The material bone: structure-mechanical function relations, Annual Review of Materials Science 28: 271-298.

Xu, H.H.K. & Simon Jr, C.G. 2005. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility Biomaterials 26: 1337-1348.

Zhao, F., Yin, Y., Lu, W.W., Leong, J.C., Zhang, W., Zhang, J., Zhang, M. & Yao K. 2002. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan gelatin network composite scaffolds. Biomaterials 23: 3227-3234.

 

 

*Pengarang untuk surat-menyurat; email: janet_limhn@yahoo.com

 

sebelumnya