Sains Malaysiana 39(2)(2010): 285–290
Aliran Titik Genangan Terhadap Permukaan Meregang dalam
Bendalir Mikropolar dengan Fluks Haba Permukaan Boleh Ubah
(Stagnation-point Flow towards a Strecthing Surface
Immersed in a Micropolar Fluid with Prescribed Surface Heat Flux)
Nor Azizah M.
Yacob
Fakulti Sains
Komputer dan Matematik, Universiti Teknologi Mara, Pahang
Lintasan
Semarak, 26400, Bandar Jengka, Pahang, D.M., Malaysia
Anuar Mohd
Ishak*
Pusat
Pengajian Sains Matematik, Fakulti Sains dan Teknologi
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
Diserahkan:
15 Mei 2009 / Diterima: 26 Ogos 2009
ABSTRAK
Aliran lapisan sempadan mantap dua matra bersebelahan titik
genangan pada permukaan meregang dalam bendalir mikropolar dengan fluks haba
permukaan boleh ubah dikaji. Halaju regangan dan halaju aliran bebas diandaikan
berubah secara linear dari titik genangan. Persamaan dalam bentuk persamaan
pembezaan separa dijelmakan kepada persamaan pembezaan biasa menggunakan
penjelmaan keserupaan dan diselesaikan secara berangka menggunakan skim
beza-terhingga yang dikenali sebagai kaedah kotak Keller. Kedua-dua aliran
membantu dan aliran menentang dipertimbangkan. Lapisan sempadan terbentuk
apabila halaju aliran bebas melebihi halaju regangan, sebaliknya, lapisan
sempadan yang terbalik terbentuk apabila halaju aliran bebas kurang daripada
halaju regangan. Keputusan berangka menunjukkan bahawa daya seretan berkurangan
bagi bendalir mikropolar berbanding dengan bendalir Newtonan, dan ini
seterusnya mengurangkan kadar pemindahan haba pada permukaan.
Kata kunci: Bendalir mikropolar; lapisan sempadan; regangan
permukaan; titik genangan
ABSTRACT
The steady two dimensional boundary layer flow adjacent to the
stagnation point on a stretching surface immersed in a micropolar fluid was
investigated. The stretching and the free stream velocities were assumed to
vary linearly from the stagnation point. The governing partial differential
equations were transformed into ordinary differential equations before being
solved numerically by a finite-difference scheme known as the Keller box
method. Both assisting and opposing flows were considered. The boundary layer
was formed when the free stream velocity exceeds the stretching velocity,
whereas the inverted boundary layer was formed when the free stream velocity is
less than the stretching velocity. The numerical results showed that the shear
force decreased for micropolar fluid compared to Newtonian fluid, and in
consequence decreased the heat transfer rate at the surface.
Keywords: Boundary layer; micropolar fluid; stagnation point;
stretching surface
RUJUKAN
Ahmadi, G. 1976. Self-similar solution
of incompressible micropolar boundary layer flow over a semi-infinite plate. Int.
J. Eng. Sci. 14: 639-646.
Cebeci, T. & Bradshaw, P. 1988. Physical
and Computational Aspects of Convective Heat Transfer. New York:
Springer-Verlag.
Chen, C.H. 1998. Laminar mixed
convection adjacent to vertical, continuously stretching sheets. Heat Mass
Transfer 33: 471-476.
Cheng, L.C. & Zong, Y.L. 2008. Free
convection on a vertical plate with uniform and constant heat flux in a
thermally stratified micropolar fluid. Mech. Res. Commun. 35: 421-427.
Chiam, T.C. 1994. Stagnation-point flow
towards a stretching plate. J. Phys. Soc. Japan 63: 2443-2444.
Crane, L.J. 1970. Flow past a stretching
plate. J. Appl. Math. Phys. (ZAMP) 21: 645-647.
Elbashbeshy, E.M.A. 1998. Heat transfer
over a stretching surface with variable surface heat flux. J. Phys. D: Appl.
Phys. 31:1951-1954.
Eringen, A.C. 1966. Theory of micropolar
fluids. J. Math. Mech. 16: 1-18.
Eringen, A.C. 1972. Theory of
thermomicropolar fluids. J. Math. Anal. Appl. 38: 480-496.
Hayat, T., Abbas, Z. & Javed, T.
2008. Mixed convection flow of a micropolar fluid over a non-linearly
stretching sheet. Phys. Lett. A. 372: 637-647.
Ishak, A., Nazar, R. & Pop, I.
2008a. Heat transfer over a stretching surface with variable heat flux in
micropolar fluids. Phys Lett. A. 372: 559-561.
Ishak, A., Nazar, R. & Pop, I.
2006b. Mixed convection boundary layers in the stagnation-point flow towards a
stretching vertical sheet. Meccanica 41: 509-518.
Ishak, A, Nazar, R & Pop, I. 2008b.
Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point
on a vertical surface. Comput. Math. Appl. 56: 3188-3194.
Kumaran, V., Banerjee, A.K., Vanav
Kumar, A. & Vajravelu, K. 2009. MHD flow past a stretching permeable
surface. Appl. Math Comput. 210: 26-32.
Lok, Y.Y., Amin, N. & Pop, I. 2007.
Mixed convection flow near a non-orthogonal stagnation point towards a
stretching vertical plate. Int. J. Heat Mass Transfer 50: 4855-4863.
Mahapatra, T.R. & Gupta, A.S. 2002.
Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass
Transfer 38: 517-521.
Nazar, R., Amin, N., Filip, D. &
Pop, I. 2004. Stagnation flow of a micropolar fluid towards a stretching sheet. Int. J. Non-Linear Mech. 39: 1227-1235.
Peddieson, J. 1972. An application of
the micropolar fluid model to the calculation of turbulent shear flow. Int.
J. Eng. Sci. 10: 23-32.
Takhar, H.S., Agarwal, R.S., Bhargava,
R. & Jain, S. 1998. Mixed convection flow of a micropolar fluid over a
stretching sheet. Heat Mass Transfer 34: 213-219.
*Pengarang untuk surat-menyurat; email:
anuar_mi@ukm.my