Sains Malaysiana 39(4)(2010): 607–613
Penilaian Risiko Radiologi Bahan Binaan
Konkrit di Semenanjung Malaysia
(Radiological
Risk Assessment of Concrete Building Materials in Peninsular Malaysia)
Aznan Fazli Ismail*, Amran Ab. Majid, Muhamad Samudi Yasir
Redzuwan Yahaya & Ismail Bahari
Pusat Pengajian Fizik Gunaan, Fakulti Sains dan
Teknologi
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Diserahkan: 25 Ogos 2009 / Diterima: 17 November 2009
ABSTRAK
Penggunaan
bahan binaan yang mengandungi bahan radioaktif tabii (NORM) yang tinggi boleh meningkatkan kadar dos dedahan kepada
penghuni di dalam sesebuah bangunan. Kebimbangan terhadap impak radiologi
kepada penghuni menyebabkan perlunya dilakukan penilaian hazard radiologi yang
berpunca daripada bahan binaan. Sehubungan itu, objektif kajian ini adalah
untuk menentukan aras keradioaktifan tabii dalam bahan binaan di Malaysia serta
menilai risiko radiologi yang diterima oleh penghuninya. Sebanyak 46 sampel
pasir, 43 sampel kerikil dan 13 sampel simen Portland telah dianalisis
menggunakan sistem spektrometri sinar gama. Hasil kajian mendapati kepekatan
aktiviti bagi ketiga-tiga sampel bahan binaan berada pada julat 4.4 Bq kg-1 hingga 354.9 Bq kg-1, 2.4 Bq kg-1 hingga 263.9 Bq kg-1 dan 15.1 Bq kg-1 hingga 1931.7 Bq kg-1 bagi masing-masing 226Ra, 232Th dan 40K. Pengiraan kadar dos dedahan dalam bangunan mendapati semua
sampel menghasilkan dos di bawah nilai 1500 μSv tahun-1, iaitu jumlah had dos yang disyorkan bagi bahan binaan. Hasil
analisis ke atas nilai indeks aras perwakilan sinar gama, indeks hazard luaran
dan indeks hazard dalaman mendapati sebahagian sampel memberikan bacaan
melebihi nilai satu, iaitu had yang ditetapkan bagi bahan binaan. Penilaian
risiko radiologi kepada penghuni dengan menggunakan kod komputer Resrad-Build
mendapati kadar dos dedahan yang berpunca daripada simen Portland, pasir dan
batu kerikil meningkat pada setiap tahun sepanjang tempoh 50 tahun.
Kata kunci:
Bahan binaan; bahan radioaktif tabii; risiko radiologi; Resrad-Build
ABSTRACT
The use of
building materials containing high concentration of naturally occurring
radioactive material (NORM) may
result in the increase of radiation dose rate inside the building. The
assessment of radiological hazard in building materials is necessary due to the
concern of radiological impact to its dwellers. Thus, the objectives of this
study were to determine the level of natural radioactivity in Malaysia’s
building materials and to assess the associated radiological risk among
dwellers. A total of 46 sands, 43 gravels and 13 Portland cement samples have
been analysed using a gamma spectrometry system. Activity concentrations of 226Ra, 232Th and 40K were found to be in the range of 4.4 Bq kg-1 to 354.9 Bq kg-1, 2.4 Bq kg-1 to 263.9 Bq kg-1 and 15.1 Bq kg-1 to 1931.7 Bq kg-1, respectively. The indoor dose rates were found to be lower
than 1500 μSv year-1, which is the recommended limit for building materials. A few
samples were found to have high values of the representative gamma level index,
external hazard index and internal hazard index compared to the suggested value
of one. The radiological risk assessments to dwellers using Resrad-Build
computer code showed that the dose rates for the Portland cement, sand and
gravel increased annually over a period of 50 years.
Keywords:
Building materials; natural radioactivity; radiological risk; Resrad-Build
RUJUKAN
Ahmed, N.K. 2005. Measurement of natural radioactivity
in building materials in Qena city, Upper Egypt. Environ. Radioactivity 83:
91-99.
Amrani, D. & Tahtat, M. 2001. Natural
radioactivity in Algerian building materials. Appl. Radiat. Isot. 54:
687-689.
Anjos, R.M., Veiga, R., Soares, T., Santos, A.M.A.,
Aguiar, J.G., Frasc‡, M.H.B.O., Brage, J.A.P., Uz da, D., Mangiaa, L., Facure, A.,
Mosquera, B., Carvalho, C. & Gomes, P.R.S. 2005. Natural radionuclide
distribution in Brazilian commercial granites. Rad. Measurements 39:
245-253.
Aznan, F. I., Yasir, M.S., Amran, Ab. M., Redzuwan, Y.
& Ismail, B. 2009. Hazard radiologi radionuklid tabii dalam simen Portland
Semenanjung Malaysia. Sains Malaysiana 38(3): 129-133.
Azlina, M.J., Ismail, B., Yasir, M.S., Sakuma, S.K.
& Khairuddin, M.K. 2003. Radiological impact assessment of radioactive
minerals of amang and ilmenite on future landuse using RESRAD computer code. Appl.
Rad. Isot. 58: 413-419.
El-Arabi, A.M., Adel, G.E.A. & Hussein, A.S. 2006.
Gamma-ray measurements of natural radioactivity in sedimentary rocks from
Egypt. Nuc. Sci. Tech. 17: 123-128.
EU Recommendation No. 112, 1999. Radiological
Protection Principles Concerning the Natural Radioactivity of Building
Materials. European Commission: Luxembourg.
Fathivand, A.A. & Amidi, J. 2007. Assessment of
natural radioactivity and the associated hazard in iranian cement. Rad.
Prot. Dosimetry 124: 145-147.
IAEA Technical Report No. 295. 1989. Measurement of
Radionuclides in Food and the Environment. Vienna: IAEA.
ICRP. 1977. Publication 26: Recomendation of
International Comission on Radiological Protection. Oxford: Pergamon Press.
ICRP. 1990. Publication 60: Recomendation of
International Comission on Radiological Protection. Oxford: Pergamon Press.
Ismail, B., Nasirian, M. & Pauzi, A. 2007.
Radioactivity and radiological risk associated with effluent sediment
containing technologically enhanced naturally occurring radioactive materials
in amang (tin tailings) processing industry. Environ. Radioactivity 95:
161-170.
James, A. & Patrick, T. 2007. Simplified Design
of Concrete Structures. Ed. ke- 2. New Jersey: John Wiley & Sons.
Kobeissi, M.A., El-Samad, O., Zahraman, K., Milky, S.,
Bahsoun, F. & Abumurad, K.M. 2008. Natural radioactivity measurements in building
materials in Southern Lebanon. Environ. Radioactivity 99: 1279-1288.
Krieger, R. 1981. Radioactivity of Construction
Materials. Betonwerk + Fertigteil-Techn. 47: 468-473.
Lee, E. M., Menezes, G. & Finch, E.C. 2004.
Natural radioactivity in building materials in the Republic of Ireland. Health
Phys. 86: 378-383.
Lu, X., Wang, F., Jia, X. & Wang, L. 2007.
Radioactive analysis and radiological hazards of lime and cement fabricated in
China. IEEE Transactions on Nuclear Science 54: 327-332.
Markkanen, M. 2001. Challenges in harmonising controls
on the radioactivity of building materials within the European Union. The
Science of the Total Environ. 272: 3-7.
NEA-OECD. 1979. Exposure to Radiation from Natural
Radioactivity in Building Materials. Report by NAE Group Expert, OECD:
Paris.
Pavlidou, S., Koroneos, A., Papastefanou, C.,
Christofides, G., Stoulos, S. & Vavelides, M. 2006. Natural radioactivity
of granites used as building material. Environ. Radioactivity 89: 48-60.
Petropoulos, N.P., Anagnostakis, M.J. &
Simopoulos, S.E., 2002. Photon attenuation, natural radioactivity content and
radon exhalation rate of building materials. Environ. Radioactivity 61:
257-269.
Razak, A.H. 2008. Auditan Kerja-kerja Konkrit.
JKR Malaysia.
Sharaf, M., Mansy, M., El Sayed, A. & Abbas, E.
1999. Natural radioactivity and radon exhalation rates in building materials
used in Egypt. Rad. Measurement 31: 491-495.
Slunga, E. 1988. Radon classification of building
ground. Radiat. Prot. Dosim. 24: 39-42.
UNSCEAR. 1993. Sources and biological effects.
United Nations Scientific Committee on the Effects of Atomic Radiation. Report
to General Assembly, with Annexes. New York: United Nations.
UNSCEAR. 2000. Exposures from Natural Radiation
Sources. United Nations Scientific Committee on the effects of Atomic
Radiation. Report to General Assembly, with Annexes. New York: United Nations.
Yasir, M.S., Majid, A. Ab. & Yahaya, R. 2007.
Study of natural radionuclides and its radiation hazard index in Malaysia
building material. Radioanal. Nucl. Chem. 273: 539-541.
Yu, C., LePoire, D.J., Cheng, J.J., Gnanapragasam E.,
Kamboj, S., Arnish, J., Biwer, B.M., Zielen, A.J., Williams, W.A., Wallo, III
A. & Peterson, Jr. H.T. 2003. User’s Manual for RESRAD-BUILD Version 3.
Argonne’s Information and Publishing Division: US.
*Pengarang untuk surat-menyurat; email:
aznan_sn@yahoo.com
|