Sains Malaysiana 39(4)(2010): 633–638

 

Antena Tompok Mikrojalur Bertindan untuk Aplikasi Gandaan Tinggi

(Stacked Microstrip Patch Antenna for High Gain Application)

 

Norbahiah Misran1*, Mohammad Tariqul Islam2 & Farizah Ansarudin1

 

1Jabatan Kejuruteraan Elektrik, Elektronik & Sistem,

Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

 

2Institut Sains Angkasa, Aras 2, Bangunan Fakulti Kejuruteraan dan Alam Bina

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 21 Januari 2009 / Diterima: 12 November 2009

 

ABSTRAK

 

Teknik reka bentuk untuk meningkatkan gandaan bagi menambah baik prestasi antena tompok mikrojalur konvensional dibincangkan. Kaedah suapan prob tersongsang jalur lebar bagi antena tompok mikrojalur berbilang lubang alur bertindan dicadangkan. Reka bentuk tersebut menggabungkan beberapa teknik kontemporari iaitu kaedah suapan prob, struktur tompok tersongsang dan tompok berbilang lubang alur bertindan. Kesan komposit daripada penyatuan pelbagai teknik ini dan dengan memperkenalkan bentuk elemen tompok yang baru, memberikan profil yang rendah, jalur lebar yang lebih luas, gandaan tinggi dan elemen antena yang padat. Keputusan menunjukkan peningkatan gandaan di mana gandaan maksimum adalah 11.42 dBi. Reka bentuk ini sesuai untuk aplikasi tata susunan terutama untuk stesen tapak.

 

Kata kunci: Antena jalur lebar; antena tompok mikrojalur; suapan prob

 

ABSTRACT

 

A novel design technique for enhancing gain that improves the performance of a conventional microstrip patch antenna is proposed. This research addresses a novel wideband probe fed inverted stacked multiple slotted microstrip patch antenna. The design adopts contemporary techniques; probe feeding, inverted patch structure and stacked multiple slotted patch. The composite effect of integrating these techniques and by introducing the novel multiple shaped patch, offer a low profile, broadband, high gain and compact antenna element. The result showed satisfactory performance with maximum achievable gain of about 11.42 dBi. The design is suitable for array applications especially for base station.

 

Keywords: Broadband antenna; microstrip patch antenna; probe fed

 

RUJUKAN

 

Araki, K., Ueda, H. & Takahashi, M. 1986. Numerical Analysis of Circular Disk Microstrip Antenna with Parasitic Elements. IEEE Transactions on Antennas and Propagation 34(12): 1390-1394.

Chair, R., Luk, K.M. & Lee, K.F. 2000. Miniature multilayer shorted patch antenna. Electron Letters 36: 3-4.

Chang, E., Long, S.A. & Richards, W.F. 1981. Experimental investigation of electrically thick rectangular microstrip antennas. IEEE Transactions on Antennas and Propagation 34: 767-772.

Chang, K. 2000. RF and Microwave Systems. College Station: Texas A & M University.

Chen, W.S., Wu, C.K. & Wong, K.L. 2000. Novel compact circularly polarized square microstrip antenna. IEEE Transactions on Antennas and Propagation 48: 1869-1872.

Egashira, S. & Nishiyama, E. 1996. Stacked microstrip antenna with wide bandwidth and high gain. IEEE Transactions on Antenas and Propagation 44: 1533-1534.

Henderson, A., James, J.R. & Hall, C.M. 1986. Bandwidth extension techniques in printed conformal antennas. Military Microwaves MM 86, Jun.

Hirasawa, K. 1991. Analysis, Design and Measurement of Small and Low-profile Antennas. Norwood MA: Artech House.

Kuo, J.S. & Wong, K.L. 2001. A compact microstrip antenna with meandering slots in the ground plane. Microwave and Opical Technology Letters 29(2): 95-97.

Lau, K.-L., Luk, K.-M. & Lee, K.-F. 2006. Design of a circularly-polarized vertical patch antena. IEEE Transactions on Antennas and Propagation 54(4): 1332-1335.

Ng, K.J., Zainol, A.A.R. & Tariqul Islam, M. 2003. Broadband inverted E-shaped rectangular microstrip patch antennas for 3G applications. IEEE National Symposium on Microelectronics pp. 286-289.

Ooi, B.L. & Lee, C.L. 1999. Broadband air-filled stacked U-slot patch antenna. Electronics Letters 35(7): 515-517.

Ooi, B.L., Lee, C.L., Kooi, P.S. & Chew, S.T. 2001. A novel F-probe fed broadband patch antenna. IEEE Antennas and Propagation Society International Symposium 4: 474-477.

Pozar, D.M. 1992. Microstrip antennas. Proceeding of IEEE, 80: 79-91.

Pozar, D.M. & Schaubert, D.H. 1995. Microstrip Antennas, the Analysis and Design of Microstrip Antenas and Arrays. New York: IEEE Press.

Rafi, G.Z. & Shafai, L. 2003. V-slotted Rectangular Microstrip Antena with a Stacked Patch. IEEE International Symposium on Antennas and Propagation Society 2: 264-267.

Sanchez-Herndez, D. & Robertson, L.D. 1996. A Survey of Broadband Microstrip Patch Antennas. Microwave Journal 39(9): 60-84.

Schaubert, D.H., Pozar, D.M. & Adrian, A.A. 1989. Effect of Microstrip Antenna Substrate Thickness and Permittivity: Comparison of Theories and Experiments. IEEE Transactions on Antennas and Propagation 37: 677-682.

Stustzman, W.L. & Thiele, G.A. 1998. Antenna Theory and Design. New York: Wiley.

Sze, J.Y. & Wong, K.L. 2000. Slotted Rectangular Microstrip Antenna for Bandwidth Enhancement. IEEE Transactions on Antenas and Propagation 48: 1149-1152.

Targonski, S.D., Waterhouse, R.B. & Pozar, D.M. 1998. Design of wide-band aperture stacked patch microstrip antennas. IEEE Transactions on Antenas and Propagation 46(9): 1245-1251.

Tariqul Islam, M., Misran, N. & Ng, K.J. 2007. A 4¥1 L-probe fed Inverted Hybrid E-H Microstrip Patch Antena Array for 3G Application. American Journal of Applied Sciences 4(11): 897-901.

Wong, K.L. & Hsu, W.H. 2001. A broadband rectangular patch antenna with a pair of wide slits. IEEE Transactions on Antennas and Propagation 49: 1345-1347.

Zhang, Y.P. & Wang, J.J. 2006. Theory and analysis of differentially-driven microstrip antennas. IEEE Transactions on Antennas and Propagation 54(4): 1092-1099.

 

*Pengarang untuk surat-menyurat; email: bahiah@vlsi.eng.ukm.my

 

 

 

 

sebelumnya