Sains Malaysiana 39(6)(2010): 1015–1023

Reka Bentuk dan Pembangunan Mikro Sel Fuel Metanol Langsung  SFML) untuk Aplikasi Mudah Alih

(Design and Development of Micro Direct Methanol Fuel Cell  DMFC) for Portable Application)

 

N. Hashim, S.K. Kamarudin* & W.R.W. Daud

Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Diserahkan: 28 April 2009 / Diterima: 16 Mei 2010

 

ABSTRAK

 

Sel tunggal dan berbilang sel metanol langsung berskala mikro dengan luas permukaan 1.0 cm2 beroperasi secara pasif telah dibangunkan dan diuji. Gas oksigen telah diambil dari persekitaran dan larutan metanol disimpan pada ruang tersedia pada bahagian anod. Prestasi sel tunggal diuji dengan menggunakan beberapa kepekatan metanol antara 1.0 M hingga 5.0 M dan keputusan menunjukkan kepekatan 4.0 M memberikan prestasi yang optimum pada operasi sel. Stek yang mengandungi 6 sel difabrikasi dan diuji dengan menggunakan kepekatan metanol optimum iaitu 4.0 M dan tenaga yang terhasil dengan muatan mangkin yang berbeza pada anod dibandingkan. Kombinasi muatan mangkin 3.0 mg cm-2 Pt/Ru pada anod dan 2.0 mg cm-2 Pt pada katod memberikan nilai tenaga yang paling tinggi antara kombinasi lain iaitu 12.05 mW pada 1.08 V dan 11.2 mA.

 

Kata kunci: Muatan mangkin; sel fuel mikro; reka bentuk; SFML

 

ABSTRACT

 

A passive, air-breathing single cell and a multi-cell stack micro direct methanol fuel cell with 1.0 cm2 active area were designed, fabricated and tested. The fuel cell was completely passive without any ancillary device such as pump. Oxygen was taken from the surrounding air, and the methanol solution was stored in a built-in reservoir. The performance of the single cell was tested with different methanol concentrations ranging from 1.0 M to 5.0 M, and the optimum performance was achieved by using methanol at a concentration of 4.0 M. A stack with 6 cells was fabricated and tested with the optimum methanol concentration of 4.0 M, and power levels produced by different catalyst loadings on the anode were compared. The combination of a catalyst loading of 3.0 mg cm-2 Pt/Ru on the anode and 2.0 mg cm-2 Pt on the cathode yielded the highest power of 12.05 mW at 1.08 V and 11.2 mA.

 

Keywords: Catalyst loading; micro fuel cell; design; DMFC

 

RUJUKAN

 

Baglio, V., Stassi, A., Matera, F.V., Antonucci, V. & Aric`o, A.S. 2009. Investigation of passive DMFC mini-stacks at ambient temperature. Electrochimica Acta 54: 2004-2009.

Bostic, E., Sifer, N., Bolton, C., Ritter, U. & Dubois, T. 2004. The US army foreign comparative test fuel cell program. Journal of Power Sources 137: 76-79.

Cao, J., Zou, Z., Huang, Q., Yuana, T., Lia, Z., Xia, B. & Yang, H. 2008. Planar air-breathing micro-direct methanol fuel cell stacks based on micro-electronic–mechanical-system technology. Journal of Power Sources 185: 433-438.

Chen, C-Y., Lai, W-H., Weng, B-J., Chuang, H-J., Hsieh, C-Y. & Kung, C-C. 2008. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC. Journal of Power Sources 179: 147-154.

Chen, F., Chang, M-H. & Lin, H-Y. 2008. Analysis of a novel MEMS-based design of micro-direct methanol fuel cell. Journal of Power Sources 178: 125-131.

Dillon, R., Srinivasan, S., Aric˜, A.S. & Antonucci, V. 2004. International activities in DMFC R&D: status of technologies and potential applications. Journal of Power Sources 127: 112-126.

Faghri, A. & Guo, Z. 2008. An innovative passive DMFC technology. Journal of Power Sources 28: 1614-1622.

Ge, J. & Liu, H. 2007. A three-dimensional two-phase flow model for a liquid-fed direct methanol fuel cell. Journal of Power Sources 163: 907-915.

Guo, Z. & Faghri, A. 2007. Development of a 1W passive DMFC. International Communication in Heat and Mass Transfer.

Ito, T., Kimura, K. & Kunimatsu, M. 2006. Characteristics of micro DMFC array fabricated on flexible polymeric substrate. Electrochemistry Communication 8: 973-976.

Jeng, K-T., Huang & W-M., Hsu, N-Y. 2009. Application of low-voltage electrophoretic deposition to fabrication of direct methanol fuel cell electrode composite catalyst layer. Materials Chemistry and Physics 113: 574-578.

Jewett, G., Fagri, A. & Xiao, B. 2009. Optimization of water and air management system for passive direct methanol fuel cell. International Journal of Heat and Mass Transfer 52: 3564-3575.

Kim, D., Cho, E.A., Hong, S-A., Oh, I-H. & Ha, H.Y. 2004. Recent progress in passive direct methanol fuel cells at KIST. Journal of Power Sources 130: 172-177.

Kim, T. & Kwon, S. 2009. MEMS fuel cell system intregrated with a methanol reformer for a portable power sources. Sensors and Actuators A 15(2): 204-211.

Kulikovsky, A.A. 2003. A method for analysis of DMFC performance curves. Electrochemistry Communications 5: 1030-1036.

Kuriyama, K., Kubota, T., Okamura, D., Suzuki, T. & Sasahara, J. 2008. Design and fabrication of MEMS-based monolithic fuel cells. Sensors and Actuators A 145-146: 354-362.

Liu, J.G. 2006. Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. Journal of Power Sources 153: 61-67.

Lua, G.Q., Wang, C.Y., Yen, T.J. & Zhang, X. 2004. Development and characterization of a silicon-based micro direct methanol fuel cell. Electrochimica Acta 49: 821-828.

Ma, Z.Q., Cheng, P. & Zhao, T.S. 2003. A palladium-alloy deposited Nafion membrane for direct methanol fuel cells. Journal of Membrane Science 215: 327-336.

Martin, J.J., Qian, W., Wang, H., Neburchilov, V., Zhang, J., Wilkinson, D.P. & Chang, Z. 2007. Design and testing of a passive planar three-cell DMFC. Journal of Power Sources 164: 287-292.

Nakagawa, N. 2009. Reaction analysis of a direct methanol fuel cell employing a porous carbon plate operated at high methanol concentration. Journal of Power Sources 186: 45-51.

Prabhuram, J., Zhao, T.S., Wong, C.W. & Guo, J.W. 2004. Synthesis and physical/electrochemical characterization of Pt/C nanocatalyst for polymer electrolyte fuel cells. Journal of Power Sources 134: 1-6.

Rawool, A.S., Sushanta, K.M. & Pharoah, J.G. 2006. An investigation of convective transport in Micro Proton-Exchange Membrane Fuel Cells. Journal of Power Sources 162: 985-991.

Schultza, T. & Sundmacher, K. 2005. Rigorous dynamic model of direct methanol fuel cell based on Maxwell-Stefan mass transport equations and a Flory-Huggins activity model: Formulation and experimental validation. Journal of Power Sources 145: 435-462.

Seong, J.Y., Bae, Y.C. & Sun, Y.K. 2005. Thermodynamic properties of direct methanol polymer electrolyte fuel cell, Journal of Power Sources 145: 598-603.

Yang, W.M., Chou, S.K. & Shu, C. 2007. Effect of current-collector structure on performance of passive micro direct methanol fuel cell. Journal of Power Sources 164: 549-554

Yang, W.W. & Zhao, T.S. 2007. A two-dimensional, two-phase mass transport model for liquid-feed DMFCs. Electro. Acta 52: 6125-6140.

Ye, Q. & Zhao, T.S. 2005. A natural-circulation fuel delivery system for direct methanol fuel cells. Journal of Power Sources 147: 196-202.

Ye, Q. & Zhao, T.S. 2005. Electrolytic hydrogen evolution in DMFCs induced by oxygen interruptions and its effect on cell performance. Electrochemical and Solid State Letters, 8: A211-A214.

Zhang, J.,Yin, G-P., Lai, Q-Z., Wang, Z-B., Cai, K-D. & Liu, P. 2007. The influence of anode gas diffusion layer on the performance of low temperature DMFC. Journal of Power Sources 168: 453-458.

Zhang, Y., Lu, J., Shimano, S., Zhou, H. & Maeda, R. 2007. Development of MEMS-based direct methanol fuel cell with high power density using nanoimprint technology. Electrochemistry Communications 9: 1365-1368.

Zhong, L., Wang, X., Jiang, Y., Zhang, Q., Qiu, X., Zhau, Y. & Liu, L. 2008. A micro-direct methanol fuel cell stack with optimized design and micro fabrication. Sensors and Actuators A: Physical 143: 70-76.

 

*Pengarang untuk surat-menyurat: ctie@vlsi.eng.ukm.my

 

 

 

sebelumnya