Sains Malaysiana 40(10)(2011): 1173–1178
Improved Sufficient Conditions for Monotonic Piecewise
Rational Quartic Interpolation
(Syarat Cukup yang Lebih Baik untuk Interpolasi Kuartik Nisbah Cebis Demi Cebis Berekanada)
Abd Rahni Mt Piah*
School
of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang
Malaysia
Keith Unsworth
Department
of Applied Computing, P.O. Box 84,Lincoln University, Lincoln 7647, Christchurch
New
Zealand
Diserahkan: 7 Julai 2010
/ Diterima: 17 Januari 2011
ABSTRACT
In 2004, Wang and Tan
described a rational Bernstein-Bézier curve
interpolation scheme using a quartic numerator and
linear denominator. The scheme has a unique representation, with parameters
that can be used either to change the shape of the curve or to increase its
smoothness. Sufficient conditions are derived by Wang and Tan for preserving monotonicity, and for achieving either C1 or
C2 continuity. In this paper, improved sufficient conditions are
given and some numerical results presented.
Keywords: Continuity;
interpolation; monotonicity; rational Bernstein-Bézier
ABSTRAK
Pada tahun 2004, Wang and Tan telah memerikan suatu skema interpolasi lengkung Bernstein-Bézier nisbah menggunakan pembilang kuartik dan penyebut linear. Skema tersebut mempunyai suatu perwakilan yang unik, dengan parameter yang boleh digunakan untuk menukar sama ada bentuk lengkung atau untuk meningkatkan kelicinan lengkung. Syarat cukup diterbitkan oleh Wang & Tan untuk mengekalkan keekanadaan, dan untuk mencapai keselanjaran sama ada C1 atau C2. Dalam kertas kerja ini, syarat perlu yang lebih baik dan beberapa keputusan berangka diberikan.
Kata kunci: Interpolasi; keekanadaan; keselanjaran; Bernstein-Bézier
nisbah
RUJUKAN
Akima, H. 1970. A new method and smooth curve fitting
based on local procedures. Journal of the Association for Computing
Machinery 17: 589-602.
Delbourgo, R. & Gregory, J.A. 1985. The determination of derivative parameters for a monotonic rational
quadratic interpolant. IMA Journal of
Numerical Analysis 5:397-406.
Duan, Q., Xu G., Liu A., Wang, X. & Cheng, F. 1999. Constrained interpolation using rational cubic spline with linear denominators. Korean Journal of Computational and Applied
Mathematics 6(1): 203-215.
Gregory,
J.A. & Delbourgo, R. 1982. Piecewise
rational quadratic interpolation to monotonic data. IMA Journal of
Numerical Analysis 2: 123-130.
Hussain,
M.Z. & Sarfraz, M. 2009. Monotone piecewise rational cubic interpolant. International Journal of Computer Mathematics 86(3): 423-430.
Sarfraz, M. 2000. A rational
cubic spline for visualization of monotonic data. Computers & Graphics 24(4): 509-516.
Sarfraz, M. 2002. Some remarks on a rational
cubic spline for visualization of monotonic data. Computers
& Graphics 26: 193-197.
Sarfraz, M. 2003. A rational cubic spline for the visualization of monotonic data: an
alternate approach. Computers & Graphics 27: 107-121.
Wang,
Q. & Tan, J. 2004. Rational quartic involving
shape parameters. Journal of Information & Computational Science 1(1):
127-130.
*Pengarang untuk surat-menyurat;
e-mail: arahni@cs.usm.my
|