Sains Malaysiana
40(3)(2011): 237–244
Atomic Force
Microscopy as a Tool for Asymmetric Polymeric Membrane Characterization
(Mikroskop Daya Atom sebagai Alat Pencirian Asimetrik Membran
Polimer)
Abdul Wahab Mohammad*,1, Nidal Hilal2, Lim Ying Pei1, Indok Nurul Hasyimah Mohd Amin1 & Rafeqah Raslan1
1Department of Chemical and
Process Engineering
Faculty
of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor D.E., Malaysia
2Centre for Water Advanced
Technologies and Environmental Research (CWATER)
Multidisciplinary
Nanotechnology Centre, College of Engineering, Swansea University, Swansea SA2
8PP, United Kingdom
Diserahkan:
15 Julai 2010 / Diterima: 3 September 2010
ABSTRACT
Atomic force microscopy (AFM)
has a wide range of applications and is rapidly growing in research and
development. This powerful technique has been used to visualize surfaces both
in liquid or gas media. It has been considered as an effective tool to
investigate the surface structure for its ability to generate high-resolution
3D images at a subnanometer range without sample pretreatment. In this paper,
the use of AFM to characterize the membrane roughness is presented
for commercial and self-prepared membranes for specific applications. Surface
roughness has been regarded as one of the most important surface properties,
and has significant effect in membrane permeability and fouling behaviour.
Several scan areas were used to compare surface roughness for different
membrane samples. Characterization of the surfaces was achieved by measuring
the average roughness (Ra) and root mean square roughness (Rrms)
of the membrane. AFM image shows that the membrane
surface was composed entirely of peaks and valleys. Surface roughness is
substantially greater for commercial available hydrophobic membranes, in
contrast to self-prepared membranes. This study also shows that foulants
deposited on membrane surface would increase the membrane roughness.
Keywords: Atomic Force
Microscopy (AFM); fouling; hydrophobic; membrane roughness
ABSTRAK
Mikroskop Daya Atom (AFM)
mempunyai penggunaan yang meluas dan berkembang pesat dalam penyelidikan serta
pembangunan. Teknik ini telah digunakan untuk menggambarkan permukaan di udara
dan proses berkaitan persekitaran yang berair. Ia merupakan alat yang berkesan
untuk menghasilkan imej 3D yang beresolusi tinggi struktur permukaan pada
ukuran julat subnanometer tanpa penyediaan awal sampel. Dalam kajian ini,
penggunaan Mikroskop Daya Atom untuk menentukan kekasaran membran ditunjukkan
untuk membran komersial dan membran yang dihasilkan di makmal dan bagi aplikasi
yang khusus. Kekasaran permukaan adalah salah satu ciri permukaan yang penting
dan memberi kesan yang signifikan kepada kebolehtelapan air dan sifat kekotoran
pada membran. Beberapa kawasan imbasan telah digunakan untuk memperbaiki
perbezaan kekasaran permukaan pada sampel yang berlainan. Ciri-ciri permukaan
telah diperolehi melalui ukuran purata kekasaran (Ra)
dan punca kuasa dua kekasaran membran (Rrms). Imej AFM menunjukkan
permukaaan membran terdiri daripada puncak dan lembah. Kekasaran permukaan
adalah lebih tinggi bagi membran komersil sedia ada yang hidrofobik, berbeza
dengan penghasilan membran sendiri. Kajian ini juga menunjukkan agen kotoran
yang terendap pada permukaan membran akan meningkatkan kekasaran membran.
Kata kunci:
Hidrofobik; kekasaran membran;
kekotoran;
Mikroskop Daya Atom (AFM)
RUJUKAN
Bessieres, A.,
Meireles, M., Coratger, R. & Sanchez, J.B.V. 1996. Investigations of
surface properties of polymeric membranes by near field microscopy. Journal
of Membrane Science 109: 271-284.
Bottino, A.,
Capannelli, G., Grosso, A., Monticelli, O., Cavalleri, O., Rolandi, R. &
Soria, R. 1994. Surface characterization of ceramic membranes by atomic force
microscopy. Journal of Membrane Science 95: 289-296.
Boussu, K., Van der
Bruggen, B., Volodin, A., Snauwaert, J., Van Haesendock, C. &
Vandecasteele, C. 2005. Roughness and hydrophobicity studies of nanofiltration
membranes using different modes of AFM. Journal of Colloid and Interface
Science 286: 632-638.
Boussu, K., Van der
Bruggen, B., Volodin, A., Van Haesendonck, C., Delcour, J.A., Van der Meeren,
P. & Vandecasteele, C. 2006. Characterization of commercial nanofiltration
membranes and comparison with self-made polyethersulfone membranes. Desalination 191: 245-253.
Bowen, W.R. 1993.
In Membranes in Bioprocessing, edited by Howell, J.A., Sanchez, V. &
Field, R.W. 265-291. London: Blackie.
Bowen, W.R. & Doneva, T.A. 2000. Artefacts in AFM studies of membranes: correcting pore images using fast fourier transform filtering. Journal of Membrane Science 171: 141-147
Bowen, W.R., Hilal,
N., Lovitt, R.W. & Wright, C.J. 1998a. Atomic force microscopy as a tool
for the membrane technologist. Microscopy and Analysis 68: 13-16.
Bowen, W.R., Hilal,
N., Lovitt, R.W. & Wright, C.J. 1998b, A new technique for membrane
characterisation: Direct measurement of the force of adhesion of a single
particle using an atomic force microscope. Journal of Membrane Science 139:
269-274.
Bowen, W.R., Hilal,
N., Lovitt, R.W. & Wright, C.J. 1999a. Atomic force microscope studies of
membrane surfaces, In Surface Chemistry and Electrochemistry of Membrane
Surfaces, edited by Sørensen, T.S. (ed.). Surfactant Science Series 79:
1-37.
Bowen, W.R., Hilal,
N., Jain, M., Lovitt, R.W., Sharif, A.O. & Wright, C.J. 1999b. The effects
of electrostatic interactions on the rejection of colloids by membrane pores –
visualization and quantification. Chemical Engineering Science 54:
369-375.
Bowen, W.R., Hilal,
N., Lovitt, R.W. & Wright, C.J., 1999c. Characterisation of membrane
surfaces: Direct measurement of biological adhesion using an atomic force
microscope. Journal of Membrane Science 154: 205-212.
Chahboun, A.,
Coratger, R., Ajustron, F., Beauvillian, J., Aimar, P. & Sanchez, V. 1992.
Comparative study of micro− and ultrafiltration membranes using STM, AFM
and SEM techniques. Ultramicroscopy 41: 235-244.
Dietz, P., Hansma,
P.K., Inacker, O., Lehmann, H.D. & Herrmann, K.H. 1992. Surface pore
structures of micro- and ultrafiltration membranes imaged with the atomic force
microscope. Journal of Membrane Science 65: 101-111.
Ducker, W.A.,
Senden T. J. & Pashley, R.M. 1992. Measurements of forces in liquids using
a force microscope. Langmuir 8: 1831-1836.
Hilal, N.,
Al-Zoubi, H., Darwish, N.A., Mohammad, A.W. & Abu Arabi, M. 2004. A
comprehensive review of nanofiltration membranes: Treatment, pretreatment,
modelling, and atomic force microscopy. Desalination 170: 281-308.
Jönsson, A.S., Lindau,
J., Wimmerstedt, R., Brinck, J. & Jönsson, B. 1997. Influence of the
concentration of a low-molecular organic solute on the flux reduction of a
polyethersulphone ultrafiltration membrane. Journal of Membrane Science 135:
117-128.
Lin, C.H., Lin,
W.C. & Yang, M.C. 2009. Fabrication and characterization of ophthalmically
compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic
F127. Colloids and Surfaces B: Biointerfaces 71: 36-44.
Miwa, T., Yamaki,
M., Yoshimusa, H., Ebina, S. & Nagayama, K. 1992. Artifacts in atomic force
microscopy images of fine particle and protein two-dimensional crystals as
evaluated with scanning electron microscopy and simulations. Japanese
Journal of Applied Physics 31: L1495.
Mizes, H.A. 1995.
Surface Roughness and Particle Adhesion. The Journal of Adhesion 51:
155-165.
Pagliero, C., Ochoa, N., Marchese, J. & Mattea, M. 2001. Degumming of crude soybean oil by ultrafiltration using polymeric membranes. Journal of the American Oil Chemists’ Society 78: 793-796.
Park, N., Kwon, B.,
Kim, I.S. & Cho, J.W. 2005. Biofouling potential of various NF membranes
with respect to bacteria and their soluble microbial products (SMP):
Characterizations, flux decline, and transport parameters. Journal of
Membrane Science 258: 43-54.
Veríssimo, S.,
Peinemann, K.V. & Bordado, J. 2006. Influence of the diamine structure on
the nanofiltration performance, surface morphology and surface charge of the
composite polyamide membranes. Journal of Membrane Science 279:
266-275.244
Walz, J.Y. 1998. The effect of
surface heterogeneities on colloidal forces. Advances in Colloid and
Interface Science 74: 119-168.
*Pengarang untuk surat-menyurat;
e-mail: wahabm@vlsi.eng.ukm.my
|