Sains Malaysiana 40(5)(2011): 497–502

 

Characterisation of Simple Sequence Repeats in the Asian Seabass, Lates calcariferby Random Sequencing

 

(Pencirian Ulangan Jujukan Ringkas dalam Ikan Siakap, Lates calcarifermelalui Penjujukan Rawak)

 

Pan-Pan Chong, AduraMohd. Adnan & Kiew-Lian Wan*

 

School of Biosciences and Biotechnology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia

 

Malaysia Genome Institute, Heliks Emas Block, UKM-MTDC Technology Centre

Unversiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia

 

Diserahkan: 1 Jun 2010 / Diterima: 27 Julai 2010

 

ABSTRACT

 

In recent years, there has been considerable interest in simple sequence repeats (SSRs) particularly as molecular markers with applications in many different fields. We have carried out an effort to identify and analyse SSRs in the genome of the Asian seabass, Lates calcarifer by random sequencing. Genomic DNA was isolated from the muscle tissue of L. calcarifer, sheared by nebulisation and ligated into plasmid vector. Recombinant clones were selected randomly from the genomic libraries constructed. Subsequently, plasmid DNA was extracted and subjected to one-pass sequencing. A total of 4175 random sequences, also known as genome survey sequences (GSSs), with a total length of 1.7 Mb was generated. Screening of the whole L. calcarifer GSS data set allowed for the identification of a total of 151 perfect (100% similarity) SSRs. These SSR consensus patterns spread over a wide range of size (1 to 226 bp). The most frequent consensus pattern is dinucleotide, which represents 60% of all SSRs identified. The dinucleotides (AC)n, (AT)n and (AG)n were also found to occur frequently in the L. calcarifer genome. Sequence comparison between L. calcarifer and other fish species showed variation in repeat content, indicating the different ways in which repeats may evolve in the genome of these species. Data generated from this random sequencing of the L. calcarifer genome should serve as a valuable resource for further studies of this organism.

 

Keywords: Genome survey sequence; GSS; molecular marker; SSR

 

ABSTRAK

 

Sejak kebelakangan ini, terdapat minat yang mendalam mengenai ulangan jujukan ringkas (SSR), terutamanya sebagai penanda molekul dengan kegunaan dalam pelbagai bidang. Kami telah melaksanakan usaha untuk mengenal pasti dan menganalisis SSR dalam genom ikan siakap, Lates calcarifermelalui penjujukan rawak. DNA genom telah dipencilkan daripada tisu otot L. calcarifer, diserpihkan dengan nebulisasi dan diligasikan ke dalam vektor plasmid. Klon rekombinan telah dipilih secara rawak daripada perpustakaan genom yang telah dibina. Seterusnya, DNA plasmid telah diekstrak dan diperlakukan penjujukan sekali lalu. Sejumlah 4175 jujukan rawak, yang juga dikenali sebagai jujukan tinjauan genom (GSS), dengan jumlah panjang 1.7 Mb telah dijana. Penabiran keseluruhan set data GSS L. calcarifer telah membolehkan pengenalpastian sejumlah 151 SSR sempurna (persamaan 100%). Corak konsensus SSR ini tersebar merentasi julat saiz yang luas (1 hingga 226 pb). Corak konsensus yang paling sering ditemui adalah dinukleotida, yang mewakili 60% daripada kesemua SSR yang dikenal pasti. Dinukleotida (AC)n, (AT)n dan (AG)n juga dijumpai hadir dengan banyak dalam genomL. calcarifer. Perbandingan jujukan di antara L. calcarifer dengan spesies ikan lain mempamerkan variasi dalam kandungan ulangan, dan ini menunjukkan cara berbeza bagaimana ulangan berupaya berevolusi dalam genom spesies ini. Data yang terjana daripada penjujukan rawak genom L. calcariferini merupakan sumber yang berharga untuk kajian lanjut tentang organisma ini.

 

Kata kunci: GSS; jujukan tinjauan genom; penanda molekul; SSR

 

REFERENCES

 

Arzimanoglou, I.I., Gilbert, F. & Barber, H.R.K. 1998. Microsatellite instability in human solid tumors. Cancer 82: 1808-1820.

Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucl. Acids Res. 27: 573-580.

Chong, P.-P., Mohd-Adnan, A. & Wan, K.-L. 2005. Construction and characterisation of a genomic library for seabass Lates calcarifer. Sains Malaysiana34: 26-32.

Chou, R. & Lee, H.B. 1997. Commercial marine fish farming in Singapore. Aquacult. Res. 28: 767-776.

Crollius, H.R., Jailon, O., Dasilva, C., Ozouf-Costaz, C., Fizames, C., Fischer, C., Bouneau, L., Billault, A., Quetier, F., Saurin, W., Bernot, A. & Weissenbach, J. 2000. Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome Res. 10: 939-949.

Estoup, A., Rousset, F., Michalakis, Y., Cornuet, J.M., Adriamanga, M. & Guyomard, R. 1998. Comparative analysis of microsatellite and allozyme markers: A case study investigating microgeographic differentiation in brown trout Salmo truttaL. Mol. Ecol. 7: 339-340.

Ewing, B. & Green, P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8: 186-194.

Ewing, B., Hillier, L., Wendy, M.C. & Green, P. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 176-185.

Field, D. & Wills, C. 1996. Long, polymorphic microsatellites in simple organisms. Proc. R. Soc. Lond. 263: 209-215.

Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & Mcmurray, C.T. 1995. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81: 533-540.

Green, P. 1996. Crossmatch. [http://bozeman.mbt.washington.edu/phrap.docs/general.html]

Hancock, J.M. 1996. Simple sequences in a ‘minimal’ genome. Nat. Genet. 14: 14-15.

Jackson, T.R., Martin-Robichaud, D.J. & Reith, M.E. 2003. Application of DNA markers to the management of Atlantic halibut (Hippoglossus hippoglossus) broodstock. Aquaculture 220: 245-259.

Moore, H., Greenwell, P.W., Liu, C.P., Arnheim, N. & Petes, T.D. 1999. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl. Acad. Sci. USA 96: 1504-1509.

Neff, B.D. & Gross, M.R. 2001. Microsatellite evolution in vertebrates: Inference from AC dinucleotide repeats. Evolution 55: 1717-1733.

Mohd-Yusof, N.-Y., Hoh, C.-C., Mohd-Adnan, A. & Wan, K.-L. 2009. Identification of immune-related genes by analysis of spleen expressed sequence tags from the Asian seabass, Lates calcarife. Sains Malaysiana38(6): 939-945.

Oliver, J.L. & Marin, A. 1996. A relationship between GC content and coding-sequence length. J. Mol. Evol. 43: 216-223.

Postlethwait, J.H., Johnson, S.L., Midson, C.N., Talbot, W.S., Gates, M., Ballinger, E.W., Africa, D., Andrews, R., Carl, T., Eisen, J.S., Horne, S., Kimmel, C.B., Hutchinson, M., Johnson, M. & Rodrigues, A. 1994. A genetic linkage map of the zebrafish. Science 126: 699-703.

Reddy, P.S. & Housman, D.E. 1997. The complex pathology of trinucleotide repeats. Curr. Opin. Cell Biol. 9: 364-372.

Schoreeret, D.F. & Gartlar, S.M. 1992. Analysis of CpGsuppression in methylated and nonmethylated species. Proc. Natl. Acad. Sci. U.S.A. 89: 957-961.

Tanaka, M. 1995. Characteristics of medaka genes and their promoter regions. Fish Biol. J. Medaka7: 11-14.

Tan, S.-L., Mohd-Adnan, A., Mohd-Yusof, N.Y., Forstner, M.R.J. & Wan, K.-L. 2008. Identification and analysis of a prepro-chicken gonadotropin releasing hormone II (preprocGnRH-II) precursor in the Asian seabass, Lates calcarifer, based on an EST-based assessment of its brain transcriptome. Gene 411: 77-86.

Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17: 6463-6471.

Toth, G., Gaspari, Z. & Jurka, J. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10: 967-981.

Watanabe, T., Fujita, H., Yamasaki, K., Seki, S. & Taniguchi, N. 2004. Preliminary study on linkage mapping based on microsatellite DNA and AFLP markers using homozygous clonal fish in ayu (Plecoglossus altivelis). Mar. Biotechnol. 6: 327-334.

Wright, J.M. & Bentzen, P. 1994. Microsatellites: genetic markers for the future. Rev. Fish Biol. Fish. 4:

 

*Pengarang untuk surat-menyurat: email: klwan@ukm.my

 

 

sebelumnya