Sains Malaysiana 40(6)(2011): 631–636
Comparison of Mesa and Device Diameter Variation in
Double Wafer-Fused Multi Quantum-Well, Long-Wavelength, Vertical Cavity Surface
Emitting Lasers
(Perbandingan Variasi Diameter Peranti dan Mesa dalam
Laser Pemancar Permukaan dengan Rongga Menegak dan Perigi Kuantum Berbilang
yang Dilakur Wafer Secara Berganda)
P. S. Menon*, K. Kandiah, B. Y. Majlis
& S. Shaari
Institute of Microengineering
and Nanoelectronics (IMEN)
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E., Malaysia
Diserahkan:
25 Januari 2010 / Diterima: 4 Mac 2010
ABSTRACT
Long-wavelength vertical-cavity surface-emitting lasers (LW-VCSELs)
have profound advantages compared to traditional edge-emitting lasers offering
improved properties with respect to mode selectivity, fibre coupling, threshold
currents and integration into 2D arrays or with other electronic devices. Its
commercialization is gaining momentum as the local and access network in
optical communication system expand. Numerical modeling of LW-VCSEL utilizing wafer-fused InP-based multi-quantum wells (MQW)
and GaAs-based distributed Bragg reflectors (DBRs)
is presented in this paper. Emphasis is on the device and mesa/pillar diameter
design parameter comparison and its effect on the device characteristics.
Keywords: GaAs; InP; mesa; multi quantum well; semiconductor
laser
ABSTRAK
Laser pemancar permukaan dengan rongga menegak untuk jarak
gelombang panjang (LW-VCSEL)
mempunyai kelebihan yang lebih nyata berbanding laser pemancar sisi
konvensional. Kelebihannya termasuklah kebolehan melakukan pemilihan mod,
gandingan gentian, arus ambang yang rendah dan pengintegrasian ke dalam jujukan
2D atau sebarang peranti elektronik lain. Momentum pengkomersialannya semakin
meningkat di dalam rangkaian tempatan dan capaian apabila sistem komunikasi
optik semakin berkembang. Pemodelan berangka LW-VCSEL yang menggunakan perigi kuantum berbilang (MQW)
berasaskan substrat InP yang terlakur wafer dan pemantul Bragg teragih (DBR)
yang berasaskan substrat GaAs dipersembahkan di dalam kertas ini. Penekanan
diberikan terhadap perbandingan parameter reka bentuk diameter dan mesa dan
kesannya terhadap pelbagai pencirian peranti.
Kata kunci: GaAs;
InP; laser semikonduktor; mesa; perigi kuantum berbilang
RUJUKAN
Babic, D.I., Piprek, J.S.,
Mirin, K., Margalit, R.P., Mars, N.M.,
Bowers, D.E. & Hu, J.E. 1997. Design and analysis of double-fused
1.55-μm vertical-cavity lasers. IEEE Journal of Selected Topics in
Quantum Electronics 33: 1369-1383.
Geske, J., Gan, K.G., Okuno, Y. L., Piprek, J.
&. Bowers, J.E. 2004. Vertical-Cavity
Surface-Emitting Laser Active
Regions for Enhanced Performance With Optical
Pumping. IEEE Journal of Quantum Electronics 40: 1155-1162.
Hofmann, W. & Amann, M.C. 2008. Long-wavelength vertical-cavity
surface-emitting lasers for high-speed applications and gas sensing. IET
Optoelectronics 2: 134-142.
Kapon, Eli & Sirbu,
Alexei. 2009. Power-efficient answer. Nature Photonics 3: 27-29.
Karim, A., Piprek, J., Abraham, P., Lofgreen, D.,
Chiu, Y.J. & Bowers, J.E. 2001.
1.55-μm vertical-cavity laser arrays for wavelength-division multiplexing. IEEE Journal of Selected Topics in Quantum Electronics 7: 178-183.
Lin, C.K., Bour, D.P., Zhu, J., Perez, W. H., Leary, M.H.,
Tandon, A., Corzine, S.W. & Tan,
M.R.T. 2003. High temperature
continuous-wave operation of 1.3- and 1.55-/spl mu/m VCSELs with InP/air-gap DBRs. IEEE Journal of Selected
Topics in Quantum Electronics 9: 1415-1421.
Margalit, N.M., Piprek, J., Zhang, S., Babic, D.I.,
Streubel, K., Mirin, R.P., Wesselmann, J.R.
& Bowers. J.E. 1997. 64°C
continuous-wave operation of 1.5-μm vertical-cavity laser. IEEE Journal
of Selected Topics in Quantum Electronics 3: 359-365.
Mehta, M., Feezell, D.,
Buell, D.A., Jackson, A.W.,
Coldren, L.A. & Bowers, J.E. 2006. Electrical design optimization of
single-mode tunnel-junction-based long-wavelength VCSELs. IEEE Journal of
Selected Topics in Quantum Electronics 42: 675-682.
Nakagawa, S., Hall, E., Almuneau,
G., Kim, J.K., Buell, D.A., Kroemer, H. & Coldren, L.A. 2001.
1.55-μm InP-lattice-matched VCSELs with AlGaAsSb-AlAsSb
DBRs. IEEE Journal on Selected Topics in Quantum Electronics 7: 224-230.
Nishiyama, N.,
Caneau, C., Guryanov, G., Liu, X.S., Hu,
M. & Zah, C.E. 2003. High efficiency long wavelength VCSEL on InP grown by
MOCVD. Electronics Letters 39: 437-439.
Ohiso, Y., Okamoto, H., Iga, R., Kishi, K. & Amano, C. 2002. Single transverse mode operation
of 1.55-μm buried heterostructure vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters 14: 738-740.
Shau, R., Ortsiefer, M., Rosskopf, J., Bohm, G., Kohler, F. & Amann, M.C. 2001.
Vertical-cavity surface-emitting laser diodes at 1.55 μm with large output
power and high operation temperature. Electronics Letters 37: 1295-1296.
Shin, J.H.,
Yoo, B.S., Han, W.S., Kwon, O.K., Ju,
Y. G. & Lee, J.H. 2002. CW operation and threshold characteristics of
all-monolithic InAlGaAs 1.55 μm VCSELs grown by MOCVD. IEEE Photonics Technology Letters 14:
1031-1033.
SILVACOInternational. 2007. ATLAS
User’s Manual, Version 5.12.0.R. USA, SILVACOInternational Incorporated.
Syrbu, A., Iakovlev,
V.P., Berseth, C.A., Dehaese, O., Rudra, A.,
Kapon, E., Jacquet, J., Boucart, J., Stark, C., Gaborit, F., Sagnes, I., Harmand, J.C. & Raj,
R. 1998. 30°C CW operation of 1.52 μm InGaAsP/AlGaAs vertical cavity
lasers with in situ built-in lateral current confinement by localised fusion. Electronics
Letters 34: 1744-1745.
Wilmsen, C., Temkin, H. & Coldren, L.A. 1999. Vertical-Cavity Surface-Emitting
Lasers, United Kingdom: Cambridge University Press.
Yuen, W., Li, G.S., Nabiev, R.F., Boucart, J., Kner, P., Stone, R.J., Zhang, D., Beaudoin, M., Zheng, T., He, C., Yu, K., Jansen, M., Worland, D.P. & Chang-Hasnain, C.J.
2000. High-performance 1.6 μm
single-epitaxy top-emitting VCSEL. Electronics Letters 36: 1121-1123.
*Pengarang untuk
surat-menyurat; email: susi@eng.ukm.my
|