Sains Malaysiana 40(6)(2011): 651–657
A New Fuzzy Version of Euler’s Method for Solving
Differential Equations with Fuzzy Initial Values
(Versi Baru Kaedah Euler Kabur untuk Menyelesaikan
Persamaan Pembezaan dengan Nilai-Nilai Awal Kabur)
M. Z. Ahmad*
Institute for
Engineering Mathematics, Universiti Malaysia Perlis, 02000 Kuala Perlis,
Perlis, Malaysia
M. K. Hasan
School of
Information Technology, Faculty of Technology and Information Science
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 9
March 2010 / Diterima: 11 Oktober 2010
ABSTRACT
This paper proposes a new fuzzy version of Euler’s method for
solving differential equations with fuzzy initial values. Our proposed method
is based on Zadeh’s extension principle for the reformulation of the classical
Euler’s method, which takes into account the dependency problem that arises in
fuzzy setting. This problem is often neglected in numerical methods found in
the literature for solving differential equations with fuzzy initial values.
Several examples are provided to show the advantage of our proposed method
compared to the conventional fuzzy version of Euler’s method proposed in the
literature.
Keywords: Euler’s method; fuzzy initial value; fuzzy set; optimization
ABSTRAK
Kertas ini mencadangkan satu versi baru kaedah Euler kabur untuk
menyelesaikan persamaan pembezaan dengan nilai awal kabur. Pendekatan yang
digunakan adalah berasaskan kepada prinsip perluasan Zadeh dengan mengambil
kira masalah kebergantungan yang wujud dalam kaedah Euler klasik. Masalah ini
sentiasa diabaikan oleh penyelidik-penyelidik dalam menyelesaikan persamaan
pembezaan dengan nilai awal kabur. Beberapa contoh diberikan untuk menunjukkan
kelebihan kaedah yang dicadangkan dan perbandingan juga dilakukan dengan versi
kabur konvensional.
Kata kunci: Kaedah
Euler; nilai awal kabur; pengoptimuman; set kabur
RUJUKAN
Ahmad, M.Z. & De Baets, B. 2009. A
predator-prey model with fuzzy initial populations. Proceedings of the Joint
13th IFSA World Congress and 6th EUSFLAT Conference pp. 1311-1314.
Ahmad, M.Z. & Hasan, M.K. 2010.
Incorporating optimisation technique into Euler method for solving differential
equations with fuzzy initial values. Proceeding of the 1st Regional
Conference on Applied and Engineering Mathematics: 2-3 June, Penang,
Malaysia.
Ahmad, M.Z., Hasan, M.K. & De Baets, B. 2010. A new
method for computing continuous function with fuzzy variable. Proceeding of
International Conference on Fundamental and Appplied Sciences: 15-17 June, Kuala
Lumpur, Malaysia
Bonarini,
A. & Bontempi, G. 1994. A qualitative simulation
approach for fuzzy dynamical models. ACM Transaction Modelling and Computer
Simulation 4:285-313.
Buckley, J.J. & Feuring, T. 2000.
Fuzzy differential equations. Fuzzy Sets and Systems 110: 43-54.
Diniz, G. L., Fernandes, J.F.R., Meyer,
J.F.C.A. & Barros, L.C. 2001. A fuzzy Cauchy problem modelling the decay of
the biochemical oxygen demand in water. Proceding of the Joint 9th IFSA
World Congress and 20th NAFIPS International Conferences pp. 512–516.
Hüllermeier, E. 1997. An approach to
modelling and simulation of uncertain dynamical systems. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5: 117-137.
Kaleva, O. 1987. Fuzzy differential equations. Fuzzy Sets and Systems 24: 301-317.
Laksmikantham, V. 2004. Set differential
equations versus fuzzy differential equations. Applied Mathematics and
Computation 164: 277-294.
Ma, M., Friedman, M. & Kandel, A.
1999. Numerical solution of fuzzy differential equations. Fuzzy Sets and
Systems 105:133-138.
Mizukoshi, M.T., Barros, L.C.,
Chalco-Cano, Y. Román-Flores, H. & Bassanezi, R.C. 2007. Fuzzy differential
equations and the extension principle. Information Sciences 177:
3627-3635.
Román-Flores, H., Barros, L. &
Bassanezi, R. 2001. A note on Zadeh’s extension principle. Fuzzy Sets and
Systems 117: 327-331.
Seikkala, S. 1987. On the fuzzy initial
value problem. Fuzzy Sets and Systems 24: 319-330.
Zadeh, L.A. 1965. Fuzzy sets. Information
and Control 8: 338-353.
Zadeh, L.A. 1975a. The concept of
linguistic variables and its application to approximate reasoning I, Information
Sciences 8: 199-249.
Zadeh, L.A. 1975b. The concept of
linguistic variables and its application to approximate reasoning II, Information
Sciences 8: 301-357.
Zadeh, L.A. 1975c. The concept of
linguistic variables and its application to approximate reasoning III, Information
Sciences 9: 43-80.
*Pengarang untuk surat-menyurat, email:
mzaini@unimap.edu.my
|