Sains Malaysiana 40(8)(2011): 913–919
Simple Calculation of the Anisotropic Factor for
Minimum Current Path in MgB2 Material Using the Extrapolated Kramer Field as priori Parameter
(Pengiraan Ringkas Faktor Ketakisotropan Untuk Lintasan Arus Minimum dalam Bahan
MgB2 Menggunakan Medan Kramer Unjuran Sebagai Parameter Priori)
M.I. Adam*
Dept of Physics, Faculty of
Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
M.F.M. Aris & S.K. Chen
Dept of Physics, Faculty of
Science, Universiti Putra Malaysia, 43400 UPM, Serdang,
Selangor, Malaysia
S.A. Halim
Institute For Mathematical Research (INSPEM), Universiti Putra
Malaysia,
43400 UPM , Serdang, Selangor, Malaysia
Diserahkan: 24 Mac 2010 / Diterima: 17 Januari 2011
ABSTRACT
The volume flux pinning
force density of MgxB2 (x
= 0.8, 1.0 and 1.2) materials was calculated for grains boundary and point
pinning potentials. Stoichiometric Mg0.8,
MgB2, and Mg1.2B2 samples
were prepared by the conventional solid state reaction method. Three pellets
were annealed at temperature range of 650-800°C. Structural analysis revealed
large values for FWHM at (hkl)
(110)(°) which indicates distortion in the boron plane
of these specimens. The a and c – axis lattice parameters showed respective contraction and elongation
with the increase in processing temperature. The low crystallinity found in Mg0.8B2 and Mg1.2B2 specimens
was concluded to be due to structural defects, which act as flux pinning centres. Experimental anisotropic factor and the minimum
fraction for current path, obtained from the framework of current percolation
theory were used to explain the strong field dependence of the critical current
density, Jc in
the specimens. The summit of the maximum pinning force density was shifted to
lower magnetic field position with the increase of anisotropy. The scaling laws
were employed in a Kramer– like field in order to identify the dominant pinning
mechanism correspondence to the summit of maximum pinning. For MgB2 specimens
however, a renormalization field based on the current percolation exposition is
considered for the identification of their dominant pinning since it is very
difficult to account for the flat behaviour of the
pinning force in the weakened current region of these specimens.
Keywords: Anisotropy;
current percolation; grain boundary pinning
ABSTRAK
Ketumpatan daya pengepin isipadu fluks dalam bahan MgxB2 (x
= 0.8, 1.0, 1.2) dikira untuk keupayaan pengepinan titik dan sempadan butiran. Bahan berstoikiometri Mg0.8, MgB2, dan Mg1.2B disediakan melalui kaedah tindak balas keadaan pepejal. Tiga pelet disepuhlindap dalam julat suhu 650-800°C. Analisis struktur menzahirkan nilai ‘FWHM’ yang besar pada (hkl) (110)(°) yang menunjukkan herotan pada satah boron bahan tersebut. Pemalar kekisi paksi-a dan c menunjukkan pengecutan dan pemanjangan apabila suhu meningkat. Kerendahan ciri kehabluran dalam bahan Mg0.8B2 and
Mg1.2B2 adalah disebabkan oleh kecacatan struktur yang bertindak sebagai pusat pengepin fluks. Faktor ketakisotroban uji kaji dan pecahan minimum yang diperoleh daripada rangka kerja teori perkolasi laluan arus digunakan untuk menjelaskan kebergantungan yang kuat ketumpatan arus genting Jc dalam bahan. Ketumpatan daya pengepin maksimum tersesar ke kedudukan rendah dengan penambahan ketakisotroban. Hukum penskalan digunakan dalam medan bak-Kramer untuk mengenalpasti mekanisme pengepinan dominan yang sepadan dengan puncak maksimum pengepinan. Walau bagaimanapun, untuk bahan MgB2 suatu medan ternormal berdasarkan kedudukan arus perkolasi diambil kira untuk penentuan pengepinan dominan kerana adalah agak sukar untuk menentukan sifat daya pengepinan yang mendatar dalam daerah arus yang lemah di dalam bahan.
Kata kunci: Anisotropi; arus perikolasi; pengepinan sempan butiran
RUJUKAN
Chen, D.X. & Goldfarb, R.B., 1989. Kim model for magnetization of type – II Superconductors. Journal
of Applied Physics 66: 2489-2500.
Chen, S.K., Serquis, A.,
Serrano, G., Yates, K.A., Blamire, M.G., Guthrie, D.,
Cooper, J., Wang, H., Margadonna, S.M. & MacManus
– Driscoll, J.L. 2008. Structural and superconducting
property variations with nominal Mg non-stoichiometry in MgxB2 and its
enhancement of upper critical field. Advanced
Functional Materials 18: 113-20.
Cheng, C.H., Yang, Y., Munroe, P. & Zhao, Y.
2007. Comparison between Nano–diamond and
carbon nanotube doping effects on critical current
density and flux pinning in MgB2. Superconductor
Science & Technology 20: 296-301.
Eisterer,
M., 2008. Calculation of the volume pinning force in MgB2 superconductors. Physical Review B 77: 144524-1-5.
Eisterer,
M., Robert, S.K., Webber H.W., Sumption, M.D. &
Bhatia, M. 2007. Neutron irradiation of SiC doped magnesium rich MgB2 wires. IEEE Transactions in Applied
Superconductivity 17: 2814-17.
Eisterer,
M., Zehetmayer, M. & Weber, H.W., 2003. Current
percolation andanisotropy in polycrystalline MgB2. Physical Review Letters 90:
247002-1-4.
Kramer,
E.J. 1973. Scaling laws for flux pinning in hard
superconductors. Journal of Applied Physics. 44: 1360 -70.
Kramer,
E.J. 1978. Fundamental fluxoid–defect interactions in
irradiate superconductors. Journal of Nuclear Materials 72: 5-33.
Larbalestier, D.C., Rikel, M.O., Cooley, L.D., Polyanskii,
A.A., Jiang, J.Y., Patniak, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B. & Hellstrom, E.E. 2001. Strongly linked current flow in
polycrystalline forms of the superconductor MgB2. Nature 410: 186-89.
Matsushita, T., Kiuchi,
M., Yamamoto, A., Shimoyama, J. & Kishio, K. 2008. Critical current
density and flux pinning in superconducting MgB2. Physica C 568: 1833-35.
Mikheenko, P., Martinez,
E., Bevan, A., Abell, J.S. & MacManus – Driscoll,
J.L., 2007. Grain boundaries and pinning in bulk MgB2. Superconductor
Science & Technology 20: S264-70.
Oh, Sangjun. & Kim, Keeman.
2006. A Consistent description of scaling laws for flux pinning in Nb3Sn
strands based on the Kramer Model. IEEE Transactions in Applied Superconductivity 16: 1216-19.
Pol, Vilas Ganpat., Pol, Swati Vilas., Felner, Israel & Gednaken, Aharon. 2006. Critical current density in the MgB2 nanoparticles prepared under autogenicpressure at elevated
temperature. Chemistry & Physics Letters 433: 115-19.
Qu, B., Sun,
X.D., Li, J.G., Xiu, Z.M., Liu, S.H. & Hue, C.P.
2009. Significant improvement of critical current density in MgB2 doped with
ferromagneticFe3O4 nanoparticles. Superconductor
Science & Technology 22: 015-027.
Stauffer, D. & Aharony, A. 1998. Introduction to Percolation
Theory. Taylor & Francis PA 19106.
Tilley,
D.R. 1965. The Ginsburg – Landau equations for anisotropic alloys. Proceedings
of the Royal Physical Society 86: 289-95.
Yamamoto, A., Shimomya,
J., Kishio, K. & Matsushta,
T. 2007. Limiting factors of normal – state conductivity in superconducting
MgB2: an application of mean – field theory for a site percolation problem. Superconductor Science & Technology 20: 658-66.
Yamamoto, A., Shimoyama,
J., Ueda, S., Katsura, Y., Iwayama,
I., Horii, S. & Kishio, K. 2006. Crystallinity and flux pinning
properties of MgB2 bulks. Physica C 445-448:
806-10.
*Pengarang untuk surat-menyurat; email: miadam@um.edu.my
|