Sains Malaysiana 41(12)(2012): 1657–1661
An
Operator Defined by Convolution Involving the
Generalised Hurwitz-Lerch Zeta Function
(Pengoperasi yang Ditakrif oleh Konvolusi MelibatkanPengitlakan Fungsi Hurwitz-Lerch Zeta)
Aabed Mohammed & Maslina Darus*
School of Mathematical Sciences, Faculty of
Science and Technology, Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor D. Ehsan, Malaysia
Diserahkan: 18 Mei 2012 / Diterima:
14 Ogos 2012
ABSTRACT
In this article, we studied the generalised Hurwitz-Lerch zeta function. We defined a new
operator and introduced a new class of function. Here, some interesting
properties and sufficient conditions for subordination were also studied.
Keywords: Hadamard product; Hurwitz-Lerch zeta function; integral operator
ABSTRAK
Dalam kertas kerja ini, fungsi teritlak Hurwitz–Lerch zeta dikaji. Pengoperasi baharu dan kelas fungsi baharu diperkenalkan. Di sini beberapa sifat dan syarat cukup untuk subordinasi juga dikaji.
Kata kunci: Fungsi Hurwitz-LCerch zeta; hasil darab Hadamard; pengoperasi kamiran
RUJUKAN
Ajwely, A. & Darus, M. 2011. On the Fekete-Szego theorem for the generalized Owa-Srivastava operator. Proceedings of the Romanian Academy Series
A 12: 179-188.
Al-Abbadi,
M.H. & Darus, M. 2011. The Fekete-Szego theorem for a certain class of analytic functions. Sains Malaysiana40: 385-389.
Al-Shaqsi,
K. & Darus, M. 2008. An operator defined by convolution involving
the polylogarithms functions. Journal of
Mathematics and Statistics 4: 46-50.
Bernardi, S.D. 1969. Convex and starlike univalent functions. Transaction American Mathematical Society 135:
429-446.
Darus, M. & Faisal, I. 2010. Hankel determinant for the class of K (α, β). Journal of Quality Measurement and
Analysis 6(2): 77-85.
Eenigenburg, P., Miller, S.S., Mocanu, P.T. & Reade, M.O. 1983. On a Briot-Bouquet
differential subordination, in General Inequalities, vol. 64 of Internationale Schriftenreihe zur Numerischen Mathematik. pp.
339-348, Basel, Switzerland. Birkhauser.
Goyal, S.P. & Laddha,
R.K. 1997. On the generalized Riemann zeta functions and the generalized
Lambert transform. Ganita Sandesh11: 99-108.
Kanemitsu, S., Katsurada,
M. &Yoshimoto, M. 2000. On the Hurwitz-Lerch zeta-function. Aequationes Mathematics 59: 1-19.
Lin, S. & Srivastava,
H.M. 2004. Some families of the Hurwitz-Lerch zeta
functions and associated fractional derivative and other integral
representations. Applied Mathematics and Computation 154: 725-733.
Noor, K.I. 1999. On new
classes of integral operators. Journal of Natural Geometry 16:
71-80.
Noor, K.I. & Noor, M.A. 1999. On integral operators. Journal of Mathematical Analysis
and Applications 238: 341-352.
Padmanabhan, K.S. & Parvatham,
R. 1985. Some applications of differential subordination. Bulletin of the Australian Mathematical Society 33: 321-330.
Ruscheweyh, St. 1975. New criteria for
univalent functions. Proceedings of American Mathematcal Society 49: 109-115.
Salagean, G.S.
1983. Subclasses of univalent functions. Lecture
Notes in Math. 1013:
262-372.
*Pengarang surat-menyurat; e-mail: maslina@ukm.my