Sains
Malaysiana 41(6)(2012): 721–729
Changes in Hepatic Phosphoprotein Levels
in Mice Infectedwith Plasmodium berghei
(Perubahan
Aras Fosfoprotein Hepar dalam Mencit Terinfeksi Plasmodium berghei)
Pramila Maniam, Zainalabidin Abu Hassan, Noor Embi & Hasidah Mohd Sidek*
School of
Biosciences & Biotechnology, Faculty of
Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Diserahkan:
7 Februari 2011 / Diterima: 5 Januari 2012
ABSTRACT
Hepatic phosphoprotein
levels are altered in mouse liver as a manifestation of bacteria, virus or
parasite infection. Identification of signaling pathways mediated by these
hepatic proteins contribute to the current understanding of the mechanism of
pathogenesis in malarial infection. The present study was undertaken to
evaluate the changes in hepatic phosphoprotein levels during Plasmodium
berghei infection. Our study revealed changes in levels of three hepatic
phosphoproteins following P. berghei infection compared to non-infected
controls. Peptide fragment sequence analysis using tandem mass spectrometry (MS/MS)
showed these hepatic proteins to be homologs to haemoglobin beta (HBB),
class Pi glutathione S-tranferase (GSTPi) and
carbonic anhydrase III (CAIII)
proteins of Mus musculus species respectively from the NCBInr sequence
database. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis predicted the involvement of these proteins in specific
pathways in Mus musculus species; GSTPi in
glutathione and drug metabolism and CAIII in
nitrogen metabolism. This shows that P. berghei infection
affects similar signaling pathways as those reported in other pathogenic
infections such as that related to GSTPi and CAIII in
response to oxidative stress.
Keywords: Chloroquine;
hepatomegaly; malaria; phosphoprotein; Plasmodium berghei
ABSTRAK
Aras fosfoprotein hepar
mencit berubah semasa manifestasi infeksi oleh bakteria, virus dan parasit. Pengenalpastian tapak jalan pengisyaratan yang diperantara oleh
protein hepar boleh menyumbang kepada pemahaman terhadap patogenesis infeksi
malaria. Kajian ini dilakukan untuk menentukan perubahan aras fosfoprotein hepar semasa infeksi Plasmodium
berghei. Dalam kajian ini, perubahan aras tiga
fosfoprotein hepar telah diperhatikan sewaktu infeksi P. berghei berbanding
kawalan tanpa infeksi. Analisis jujukan fragmen peptida menggunakan
spektrometri jisim tandem (MS/MS)
menunjukkan protein hepar tersebut terdiri daripada homolog kepada hemoglobin
beta (HBB), glutation
S-tranferase kelas Pi (GSTPi) dan karbonik anhidrase
III (CAIII) daripada spesies Mus
musculus masing-masing dari pangkalan data jujukan NCBInr.
Analisis tapak jalan menggunakan pangkalan data Kyoto
Encyclopedia of Genes and Genomes (KEGG)
meramalkan penglibatan GSTPi dalam metabolisme
glutation dan dadah; dan protein CAIII dalam
metabolisme nitrogen, kesemuanya dalam spesies Mus
musculus. Kajian ini menunjukkan bahawa infeksi P. berghei memberi
kesan terhadap tapak jalan pengisyaratan yang telah dilaporkan terlibat dalam
infeksi patogen lain umpamanya tapak jalan berkaitan GSTPi dan CAIII sebagai
respons terhadap tekanan oksidatif.
Kata
kunci: Fosfoprotein; hepatomegali; klorokuin; malaria; Plasmodium berghei
RUJUKAN
Adachi,
K., Tsutsui, H., Kashiwamura, S., Seki, E., Nakano, H., Takeuchi, O., Takeda,
K., Okumura, K., Kaer, V.L., Okamura, H., Akira, S. & Nakanishi, K. 2001. Plasmodium
berghei infection in mice induces liver injury by an IL-12- and Toll-like
receptor/myeloid differentiation factor 88 dependent mechanism. Journal of Immunology 167: 5928–5934
Alkahtani, S. 2010. Different
apoptotic responses to Plasmodium chabaudi malaria in spleen and liver. African Journal of Biotechnology 9(45): 7611-7616.
Biswas,
D., Niwa, H. & Itoh, K. 2004. Infection with Campylobacter
jejuni induces tyrosine-phosphorylated proteins into INT-407 cells. Microbiology
and Immunology 48(4): 221-228.
Bradford,
M.M. 1976. A rapid and sensitive method for quantitation of
microgram quantities of protein utilizing the principle of protein-dye-binding. Analytical Biochemistry 72: 248-254.
Choi, J.
& Ou, J.H. 2006. Mechanisms of liver injury III. Oxidative stress in the pathogenesis of hepatitis C virus. American
Journal of Physiology: Gastrointestinal and Liver Physiology 290:
G847–G851.
Coban, C.,
Ishii, K.J., Horii, T. & Akira, S. 2007. Manipulation of host innate immune
responses by the malaria parasite. Trends in Microbiology 15(6):
271-278.
Fowler,
C.B., Chesnick, I.E., Moore, C.D., O’Leary T.J. & Mason, J.T. 2010. Elevated
pressure improves the extraction and identification of proteins recovered from
formalin-fixed, paraffin-embedded tissue surrogates. PLoS ONE5(12): e14253.
Greenwood,
B.M., Fidock, D.A., Kyle, D.E., Kappe, S.H.I, Alonso, P.L., Collins, F.H. &
Duffy, P.E. 2008. Malaria: Progress, perils and prospects
for eradication. Journal of Clinical Investigation 118(4): 1266-1276.
Harvie,
M., Jordan, T.W. & Flamme, A.C.L. 2007. Differential
liver protein expression during schistosomiasis. Infection and
Immunity 75(2): 736-744.
Ishino,
T., Yano, K., Chinzei, Y. & Yuda, M. 1994. Cell-passage activity is required for the malarial parasite to cross the liver
sinusoidal cell layer. Public Library of Science Biology 2(1): 77-85.
Kanehisa
Laboratories. 1995. KEGG pathway database.
http://www.genome.jp/kegg/pathway.html [1 December 2010].
Kanehisa,
M., Goto, S., Furumichi, M., Tanabe, M., & Hirakawa, M. 2010. KEGG for
representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38: D355-D360.
Kim, G.,
Lee, T.H., Wetzel, P., Geers, C., Robinson, M.A., Myers, T.G., Owens, J.W.,
Wehr, N.B., Eckhaus, M.W., Gros, G., Boris, A.W. & Levine, R.L. 2004.
Carbonic anhydrase III is not required in the mouse for normal growth,
development, and life span. Molecular and Cellular Biology 24(22):
9942-9947.
Kochar,
D.K., Agarwal, P., Kochar, S.K., Jain, R., Rawat, N., Pokharna, R.K., Kachhawa,
S. & Srivastava, T. 2003. Hepatocyte
dysfunction and hepatic encephalopathy in Plasmodium falciparum malaria. International Journal of Medicine 96: 505–512.
Krucken,
J., Dkhil, M.A., Braun, J.V., Schroetel, R.M.U., El-Khadragy, M., Carmeliet,
P., Mossmann, H. & Wunderlich, F. 2005. Testosterone suppresses
protective responses of the liver to blood-stage malaria. Infection and
Immunity 73(1): 436-443.
Kshreerasagar,
R.L. & Kaliwal, B.B. 2006. Histological and biochemical
changes in the liver of albino mice on exposure to insecticide, carbosulfan. The Journal of Environmental Science and Technology 4(1): 67-70.
Laemmli,
U.K. 1970. Cleavage of structural proteins during the
assembly of the head of bacteriophage T4. Nature227: 680-685.
Lee, C.
2007. Protein extraction in mammalian tissues. Methods
in Molecular Biology 362: 385-389.
Lo, H.W.,
Antoun, G.R. & Osman, F.A. 2004. The human glutathione S-transferase
P1 protein is phosphorylated and its metabolic function enhanced by the Ser/Thr
protein kinases, cAMP-dependent protein kinase and protein kinase C, in
glioblastoma cells. Cancer Research 64: 9131-9138.
Mao,
X., Cai, T., Olyarchuk, J.G. & Wei, L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology
(KO) as a controlled vocabulary. Bioinformatics 21(19): 3787-3793.
Marlovits,
S., Hombauer, M., Truppe, M., Vècsei, V. & Schlegel, W. 2004. Changes in the ratio of type-I and type-II collagen expression
during monolayer culture of human chondrocytes. The
Journal of Bone and Joint Surgery 86B(2): 286-295.
Nelson,
M.M., Jones, A.R., Carmen, J.C., Sinai, A.P., Burchmore, R. & Wastling,
J.M. 2008. Modulation of the host cell
proteome by the intracellular apicomplexan parasite Toxoplasma gondii. Infection and Immunity 76(2):828-844.
Nobes,
M.H., Ghabrial, H., Simms, K.M., Smallwood, R.B., Morgan, D.J. & Sewell,
R.B. 2002. Hepatic Kupffer cell
phagocytotic function in rats with erythrocytic-stage malaria. Gastroenterology
and Hepatology 17: 598-605.
Okamura,
T., Singh, S., Buolamwini, J., Haystead, T. & Friedman, H. 2009. Tyrosine phosphorylation of the human glutathione S-transferase P1 by
epidermal growth factor receptor. Journal of Biological Chemistry 284
(5): 16979-16989.
Orjih,
A.U. 1997. Heme polymerase activity and the stage specificity
of antimalarial action of chloroquine. The Journal of Pharmacology
and Experimental Therapeutics 282: 108–112.
Paranawithana,
S.R., Tu, C.K., Laipis, P.J. & Silverman, D.N. 1990. Enhancement of the catalytic activity of carbonic anhydrase III. Journal of Biological Chemistry 265(36): 22270-22274.
Patel,
S.P., Katewa, S.D. & Katyare, S.S. 2005. Effect of antimalarials treatment
on rat liver lysosomal function- an in vivo study. Indian Journal of
Clinical Biochemistry 20(1): 1-8.
Peters,
W., Portus, J.H. & Robinson, B.L. 1975. The chemotherapy
of rodent malaria. XXII. The value of drug-resistant strains of P.
berghei in screening for blood schizonticidal activity. Annals of
Tropical Medicine and Parasitology 69:155–171.
Prudêncio,
M., Rodriguez, A. & Mota, M.M. 2006. The silent path to
thousands of merozoites: the Plasmodium liver stage. Nature Reviews Microbiology 4: 849-856.
Rahman,
I. & MacNee, W. 2000. Regulation of redox glutathione levels and gene
transcription in lung inflammation: therapeutic approaches. Free Radical
Biology and Medicine 28(9): 1405-1420.
Saito,
S., Shinomiya, H. & Nakano, M. 1994. Protein phosphorylation
in murine peritoneal macrophages induced by infection with Salmonella species. Infection
and Immunity 62(5): 1551-1556.
Sand, C.,
Hortsmann, S., Schmidt, A., Sturn, A., Bolte, S., Krueger, A., Lutgehetmann,
M., Pollok, J.M., Libert, C. & Heussler, V.T. 2005. The liver stage of Plasmodium berghei inhibits
host cell apoptosis. Molecular Microbiology58(3): 731-742.
Sein, K.K. & Aikawa,
M. 1998. The pivotal
role of carbonic anhydrase in malaria infection. Medical Hypotheses50:
19-23.
Sharrock,
W.W., Suwanarusk, R., Lek-Uthai, U., Edstein, M.D., Kosaisavee, V., Travers,
T., Jaidee, A., Sriprawat, K., Price, R.N., Nosten, F. & Russel, B. 2008. Plasmodium vivax trophozoites insensitive to chloroquine. Malaria Journal 7: 94-99.
Sherman,
I.W. 2008. Reflections on a century of malaria biochemistry: In vivo and in
vitro models. Advances in Parasitology 67: 25-47.
Shi,
Y., Sun, S., Liu, Y., Li, J., Zhang, T., Wu, H., Chen, X., Chen, D. & Zhou,
Y. 2010. Keratin 18 phosphorylation as a progression
marker of chronic hepatitis B. Virology Journal 7:70.
Sohail,
M., Kumar, R., Kaul, A., Arif, E., Kumar, S. & Adak, T. 2010. Polymorphism in glutathione S-transferase P1 is associated with
susceptibility to Plasmodium vivax malaria compared to P. falciparum and
upregulates the GST level during malarial infection. Free Radical Biology
and Medicine 49(11): 1746-1754.
Thomas,
J., Tanja, P., Iris, G. & Bernhard, F. 2004. CTLA-4-dependent mechanisms prevent T cell induced-liver pathology during the
erythrocyte stage of Plasmodium berghei malaria. European Journal of
Immunology34: 972-980.
Towbin,
H., Staehelin, T. & Gordon, J. 1979. Electrophoretic transfer of proteins
from polyacrylamide gels to nitrocellulose sheets: procedure and some
applications. Proceedings of the National Academy of Sciences USA 76(9):
4350-4354.
Viboud,
G.I. & Bliska, J.B. 2005. Sex determination and sex differentiation in
malaria parasites. Annual Review of Microbiology 59: 69-89.
Wu,
Y., Nelson, M., Quaile, A., Xia, D., Wastling, J. & Craig, A. 2009. Identification of phosphorylated proteins in erythrocytes infected by the human
malaria parasite Plasmodium falciparum. Malaria Journal 8
(1):105.
Wilairatana,
P., Tangpuckdee, N., Krudsood, S., Pongponratn, E. & Riganti, M. 2008. Gastrointestinal and liver involvement in falciparum malaria. Journal of Gastroenterology9(3):
124-127.
Zhang,
D.H., Tai, L.K., Wong, L.L., Sethi, S.K. & Koay, E.S.C. 2005. Proteomic study reveals that proteins involved in metabolic and detoxification
pathways are highly expressed in HER-2/neu-positive breast cancer. Molecular
and Cellular Proteomics 4: 1686-1696.
*Pengarang surat-menyurat; email: hasidah@ukm.my
|