Sains Malaysiana 41(6)(2012): 721–729

 

Changes in Hepatic Phosphoprotein Levels in Mice Infectedwith Plasmodium berghei

(Perubahan Aras Fosfoprotein Hepar dalam Mencit Terinfeksi Plasmodium berghei)

Pramila Maniam, Zainalabidin Abu Hassan, Noor Embi & Hasidah Mohd Sidek*

School of Biosciences & Biotechnology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 7 Februari 2011 / Diterima: 5 Januari 2012

 

ABSTRACT

 

Hepatic phosphoprotein levels are altered in mouse liver as a manifestation of bacteria, virus or parasite infection. Identification of signaling pathways mediated by these hepatic proteins contribute to the current understanding of the mechanism of pathogenesis in malarial infection. The present study was undertaken to evaluate the changes in hepatic phosphoprotein levels during Plasmodium berghei infection. Our study revealed changes in levels of three hepatic phosphoproteins following P. berghei infection compared to non-infected controls. Peptide fragment sequence analysis using tandem mass spectrometry (MS/MS) showed these hepatic proteins to be homologs to haemoglobin beta (HBB), class Pi glutathione S-tranferase (GSTPi) and carbonic anhydrase III (CAIII) proteins of Mus musculus species respectively from the NCBInr sequence database. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis predicted the involvement of these proteins in specific pathways in Mus musculus species; GSTPi in glutathione and drug metabolism and CAIII in nitrogen metabolism. This shows that P. berghei infection affects similar signaling pathways as those reported in other pathogenic infections such as that related to GSTPi and CAIII in response to oxidative stress.

 

Keywords: Chloroquine; hepatomegaly; malaria; phosphoprotein; Plasmodium berghei

 

 

ABSTRAK

Aras fosfoprotein hepar mencit berubah semasa manifestasi infeksi oleh bakteria, virus dan parasit. Pengenalpastian tapak jalan pengisyaratan yang diperantara oleh protein hepar boleh menyumbang kepada pemahaman terhadap patogenesis infeksi malaria. Kajian ini dilakukan untuk menentukan perubahan aras fosfoprotein hepar semasa infeksi Plasmodium berghei. Dalam kajian ini, perubahan aras tiga fosfoprotein hepar telah diperhatikan sewaktu infeksi P. berghei berbanding kawalan tanpa infeksi. Analisis jujukan fragmen peptida menggunakan spektrometri jisim tandem (MS/MS) menunjukkan protein hepar tersebut terdiri daripada homolog kepada hemoglobin beta (HBB), glutation S-tranferase kelas Pi (GSTPi) dan karbonik anhidrase III (CAIII) daripada spesies Mus musculus masing-masing dari pangkalan data jujukan NCBInr. Analisis tapak jalan menggunakan pangkalan data Kyoto Encyclopedia of Genes and Genomes (KEGG) meramalkan penglibatan GSTPi dalam metabolisme glutation dan dadah; dan protein CAIII dalam metabolisme nitrogen, kesemuanya dalam spesies Mus musculus. Kajian ini menunjukkan bahawa infeksi P. berghei memberi kesan terhadap tapak jalan pengisyaratan yang telah dilaporkan terlibat dalam infeksi patogen lain umpamanya tapak jalan berkaitan GSTPi dan CAIII sebagai respons terhadap tekanan oksidatif.

 

Kata kunci: Fosfoprotein; hepatomegali; klorokuin; malaria; Plasmodium berghei

RUJUKAN

Adachi, K., Tsutsui, H., Kashiwamura, S., Seki, E., Nakano, H., Takeuchi, O., Takeda, K., Okumura, K., Kaer, V.L., Okamura, H., Akira, S. & Nakanishi, K. 2001. Plasmodium berghei infection in mice induces liver injury by an IL-12- and Toll-like receptor/myeloid differentiation factor 88 dependent mechanism. Journal of Immunology 167: 5928–5934

Alkahtani, S. 2010. Different apoptotic responses to Plasmodium chabaudi malaria in spleen and liver. African Journal of Biotechnology 9(45): 7611-7616.

Biswas, D., Niwa, H. & Itoh, K. 2004. Infection with Campylobacter jejuni induces tyrosine-phosphorylated proteins into INT-407 cells. Microbiology and Immunology 48(4): 221-228.

Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Analytical Biochemistry 72: 248-254.

Choi, J. & Ou, J.H. 2006. Mechanisms of liver injury III. Oxidative stress in the pathogenesis of hepatitis C virus. American Journal of Physiology: Gastrointestinal and Liver Physiology 290: G847–G851.

Coban, C., Ishii, K.J., Horii, T. & Akira, S. 2007. Manipulation of host innate immune responses by the malaria parasite. Trends in Microbiology 15(6): 271-278.

Fowler, C.B., Chesnick, I.E., Moore, C.D., O’Leary T.J. & Mason, J.T. 2010. Elevated pressure improves the extraction and identification of proteins recovered from formalin-fixed, paraffin-embedded tissue surrogates. PLoS ONE5(12): e14253.

Greenwood, B.M., Fidock, D.A., Kyle, D.E., Kappe, S.H.I, Alonso, P.L., Collins, F.H. & Duffy, P.E. 2008. Malaria: Progress, perils and prospects for eradication. Journal of Clinical Investigation 118(4): 1266-1276.

Harvie, M., Jordan, T.W. & Flamme, A.C.L. 2007. Differential liver protein expression during schistosomiasis. Infection and Immunity 75(2): 736-744.

Ishino, T., Yano, K., Chinzei, Y. & Yuda, M. 1994. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. Public Library of Science Biology 2(1): 77-85.

Kanehisa Laboratories. 1995. KEGG pathway database. http://www.genome.jp/kegg/pathway.html [1 December 2010].

Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., & Hirakawa, M. 2010. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38: D355-D360.

Kim, G., Lee, T.H., Wetzel, P., Geers, C., Robinson, M.A., Myers, T.G., Owens, J.W., Wehr, N.B., Eckhaus, M.W., Gros, G., Boris, A.W. & Levine, R.L. 2004. Carbonic anhydrase III is not required in the mouse for normal growth, development, and life span. Molecular and Cellular Biology 24(22): 9942-9947.

Kochar, D.K., Agarwal, P., Kochar, S.K., Jain, R., Rawat, N., Pokharna, R.K., Kachhawa, S. & Srivastava, T. 2003. Hepatocyte dysfunction and hepatic encephalopathy in Plasmodium falciparum malaria. International Journal of Medicine 96: 505–512.

Krucken, J., Dkhil, M.A., Braun, J.V., Schroetel, R.M.U., El-Khadragy, M., Carmeliet, P., Mossmann, H. & Wunderlich, F. 2005. Testosterone suppresses protective responses of the liver to blood-stage malaria. Infection and Immunity 73(1): 436-443.

Kshreerasagar, R.L. & Kaliwal, B.B. 2006. Histological and biochemical changes in the liver of albino mice on exposure to insecticide, carbosulfan. The Journal of Environmental Science and Technology 4(1): 67-70.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227: 680-685.

Lee, C. 2007. Protein extraction in mammalian tissues. Methods in Molecular Biology 362: 385-389.

Lo, H.W., Antoun, G.R. & Osman, F.A. 2004. The human glutathione S-transferase P1 protein is phosphorylated and its metabolic function enhanced by the Ser/Thr protein kinases, cAMP-dependent protein kinase and protein kinase C, in glioblastoma cells. Cancer Research 64: 9131-9138.

Mao, X., Cai, T., Olyarchuk, J.G. & Wei, L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19): 3787-3793.

Marlovits, S., Hombauer, M., Truppe, M., Vècsei, V. & Schlegel, W. 2004. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. The Journal of Bone and Joint Surgery 86B(2): 286-295.

Nelson, M.M., Jones, A.R., Carmen, J.C., Sinai, A.P., Burchmore, R. & Wastling, J.M. 2008. Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii. Infection and Immunity 76(2):828-844.

Nobes, M.H., Ghabrial, H., Simms, K.M., Smallwood, R.B., Morgan, D.J. & Sewell, R.B. 2002. Hepatic Kupffer cell phagocytotic function in rats with erythrocytic-stage malaria. Gastroenterology and Hepatology 17: 598-605.

Okamura, T., Singh, S., Buolamwini, J., Haystead, T. & Friedman, H. 2009. Tyrosine phosphorylation of the human glutathione S-transferase P1 by epidermal growth factor receptor. Journal of Biological Chemistry 284 (5): 16979-16989.

Orjih, A.U. 1997. Heme polymerase activity and the stage specificity of antimalarial action of chloroquine. The Journal of Pharmacology and Experimental Therapeutics 282: 108–112.

Paranawithana, S.R., Tu, C.K., Laipis, P.J. & Silverman, D.N. 1990. Enhancement of the catalytic activity of carbonic anhydrase III. Journal of Biological Chemistry 265(36): 22270-22274.

Patel, S.P., Katewa, S.D. & Katyare, S.S. 2005. Effect of antimalarials treatment on rat liver lysosomal function- an in vivo study. Indian Journal of Clinical Biochemistry 20(1): 1-8.

Peters, W., Portus, J.H. & Robinson, B.L. 1975. The chemotherapy of rodent malaria. XXII. The value of drug-resistant strains of P. berghei in screening for blood schizonticidal activity. Annals of Tropical Medicine and Parasitology 69:155–171.

Prudêncio, M., Rodriguez, A. & Mota, M.M. 2006. The silent path to thousands of merozoites: the Plasmodium liver stage. Nature Reviews Microbiology 4: 849-856.

Rahman, I. & MacNee, W. 2000. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radical Biology and Medicine 28(9): 1405-1420.

Saito, S., Shinomiya, H. & Nakano, M. 1994. Protein phosphorylation in murine peritoneal macrophages induced by infection with Salmonella species. Infection and Immunity 62(5): 1551-1556.

Sand, C., Hortsmann, S., Schmidt, A., Sturn, A., Bolte, S., Krueger, A., Lutgehetmann, M., Pollok, J.M., Libert, C. & Heussler, V.T. 2005. The liver stage of Plasmodium berghei inhibits host cell apoptosis. Molecular Microbiology58(3): 731-742.

Sein, K.K. & Aikawa, M. 1998. The pivotal role of carbonic anhydrase in malaria infection. Medical Hypotheses50: 19-23.

Sharrock, W.W., Suwanarusk, R., Lek-Uthai, U., Edstein, M.D., Kosaisavee, V., Travers, T., Jaidee, A., Sriprawat, K., Price, R.N., Nosten, F. & Russel, B. 2008. Plasmodium vivax trophozoites insensitive to chloroquine. Malaria Journal 7: 94-99.

Sherman, I.W. 2008. Reflections on a century of malaria biochemistry: In vivo and in vitro models. Advances in Parasitology 67: 25-47.

Shi, Y., Sun, S., Liu, Y., Li, J., Zhang, T., Wu, H., Chen, X., Chen, D. & Zhou, Y. 2010. Keratin 18 phosphorylation as a progression marker of chronic hepatitis B. Virology Journal 7:70.

Sohail, M., Kumar, R., Kaul, A., Arif, E., Kumar, S. & Adak, T. 2010. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to Plasmodium vivax malaria compared to P. falciparum and upregulates the GST level during malarial infection. Free Radical Biology and Medicine 49(11): 1746-1754.

Thomas, J., Tanja, P., Iris, G. & Bernhard, F. 2004. CTLA-4-dependent mechanisms prevent T cell induced-liver pathology during the erythrocyte stage of Plasmodium berghei malaria. European Journal of Immunology34: 972-980.

Towbin, H., Staehelin, T. & Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences USA 76(9): 4350-4354.

Viboud, G.I. & Bliska, J.B. 2005. Sex determination and sex differentiation in malaria parasites. Annual Review of Microbiology 59: 69-89.

Wu, Y., Nelson, M., Quaile, A., Xia, D., Wastling, J. & Craig, A. 2009. Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum. Malaria Journal 8 (1):105.

Wilairatana, P., Tangpuckdee, N., Krudsood, S., Pongponratn, E. & Riganti, M. 2008. Gastrointestinal and liver involvement in falciparum malaria. Journal of Gastroenterology9(3): 124-127.

Zhang, D.H., Tai, L.K., Wong, L.L., Sethi, S.K. & Koay, E.S.C. 2005. Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Molecular and Cellular Proteomics 4: 1686-1696.

 

 

*Pengarang surat-menyurat; email: hasidah@ukm.my

 

 

sebelumnya