Sains Malaysiana 41(7)(2012): 893–899

 

Fotoelektrod Tungsten Trioksida Terdop Nikel untuk Tindak Balas Pembelahan

Air Fotoelektrokimia

(Nickel-doped Tungsten Trioxide Photoelectrodes for Photoelectrochemical

Water Splitting Reaction)

 

Ng Kim Hang & Mohammad Bin Kassim

Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Lorna Jeffery Minggu*

Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Mohammad Hafizuddin Haji Jumali

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

 

 

Diserahkan: 19 Oktober 2011 / Diterima: 30 Januari 2012

 

 

ABSTRAK

Tungsten trioksida (WO3) merupakan salah satu fotomangkin yang berpotensi dalam aplikasi penjanaan gas hidrogen daripada tindak balas pembelahan air. Dalam kajian ini, pelbagai komposisi filem nipis WO3 terdop nikel dihasilkan pada kaca stanum(IV) oksida terdop fluorin (FTO) dengan menggunakan asid tungstik dan nikel(II) asetat sebagai bahan pemula. Selepas disepuhlindap pada 500°C selama 30 min, sampel filem nipis ini dicirikan dengan menggunakan SEM, XRD, spektrofotometer UV-Vis serta analisis fotoelektrokimia (PEC). WO3 terdop nikel mempunyai saiz zarah yang lebih besar berbanding sampel WO3 tulen dan mempunyai struktur hablur monoklinik. Jurang tenaga WO3 terdop nikel yang dianggarkan daripada spektrum UV-Vis dengan menggunakan formula Tauc adalah lebih kecil berbanding jurang tenaga bagi WO3 tulen. Ujian aplikasi PEC di bawah sinaran lampu xenon menunjukkan kecekapan penghasilan gas hidrogen oleh filem WO3 terdop nikel yang digunakan sebagai fotoanod telah dipertingkatkan.

 

Kata kunci: Fotoanod; pembelahan air secara langsung; penjanaan hidrogen; sel fotoelektrokimia; tungsten trioksida terdop nikel

 

ABSTRACT

Tungsten trioxide (WO3) is one of the photocatalysts with a high potential for application in water splitting reaction to produce hydrogen gas. In this paper, different compositions of nickel-doped WO3 thin films on fluorine-doped tin oxide (FTO) glass were produced from tungstic acid and nickel(II) acetate. After annealing at 500°C for 30 min, the thin films were characterized using SEM, XRD, UV-Vis spectrophotometer and photoelectrochemical (PEC) test. Ni-doped WO3 exhibited an increased grain size compared to undoped WO3 and adopted a monoclinic structure. Optical band gaps calculated with Tauc formula from UV-Vis absorption data showed a reduction in band gap for Ni-doped WO3. Under the irradiation of xenon lamp, the efficiency of hydrogen production by nickel-doped WO3 thin films were improved.

 

Keywords: Direct water splitting; hydrogen production; nickel-doped tungsten trioxide; photoanode; photoelectrochemical cell

RUJUKAN

Chawla, A.K., Singhal, S., Gupta, H.O & Chandra, R. 2009. Influence of nitrogen doping on the sputter-deposited WO3 films. Thin Solid Films 518: 1430-1439.

Cheng, X.F., Leng, W.H., Liu, D.P., Zhang, J.Q. & Cao C.N. 2007. Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light. Chemosphere 68: 1976-1984.

Dholam, R., Patel, N., Adami, M. & Niotekko, A. 2009. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. International Journal of Hydrogen Energy 34: 5337-5346.

Enesca, A., Duta, A. & Schoonman, J. 2007. Study of photoactivity of tungsten trioxide (WO3) for water splitting. Thin Solid Films 515: 6371-6374.

Esfandarani, M.T., Minggu, L.J., Daud, W.R.W.  & Kassim, M.B. 2010. Synthesis and charaterization of Fe2O3/SiO2/TiO2 composite thin film on different substrates for water splitting. Journal of New Materials for Electrochemical Systems 13: 333-335.

Fardindoost, S., Iraji zad, A., Rahimi, F. & Ghasempour, R. 2010. Pd doped WO3 films prepared by sol–gel process for hydrogen sensing. International Journal of Hydrogen Energy 35: 854-860.

Gavrilyuk, A.I. 2009. Application of WO3 thin films for enhancement of photolysis in AgCl. Solar Energy Materials & Solar Cells 93: 1885-1895.

Hameed, A., Gondal, M.A. & Yamani, Z.H. 2004. Effects of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catalysis Communications 5: 715-719.

Hong, S.J., Jun, H., Borse, P.H. & Lee, J.S. 2009. Size effect of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. International Journal of Hydrogen Energy 34: 3234-3242.

Hutchins, M.G., Abu-Alkhair, O., El-Nahass, M.M. & Abd El-Hady, K. 2006. Structural and optical characterisation of thermally evaporated tungsten trioxide (WO3) thin films. Materials Chemistry and Physics 98: 401-405.

Karuppasamy, K.M. & Subrahmanyam, A. 2008. The electrochromic and photocatalytic properties of electron beam evaporated vanadium-doped tungsten oxide thin films. Solar Energy Materials & Solar Cells 92: 1322-1326.

Li, W., Li, J., Wang, X., Ma, J. & Chen, Q. 2010. Photoelectrochemical and physical properties of WO3 films obtained by the polymeric precursor method. International Journal of Hydrogen Energy 35: 13137-13145.

Liu, H., Peng, T., Ke, D., Peng, Z. & Yan, C. 2007. Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles. Materials Chemistry and Physics 104: 377-383.

Minggu, L.J., Wan, R.W.D. & Mohammad B. K. 2010. An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy 35: 5233-5244.

Memar, A., Wan, R.W.D., Hosseini, S., Eftekhari, E. & Minggu, L.J. 2010. Study on photocurrent of bilayers photoanodes using different combination of WO3 and Fe2O3. Solar Energy 84: 1538- 44.

Ni, M., Leung, M.K.H., Leung, D.Y.C. & Sumathy, K. 2007. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 11: 401-425.

Nowotny, J., Sorrell, C.C., Sheppard, L.R. & Bak, T. 2005. Solar-hydrogen: Environmentally safe fuel for the future. International Journal of Hydrogen Energy 30: 521-544

Patil, P. S., Mujawar, S. H., Inamdar, A.I. Shinde, P.S., Deshmukh, H.P. & Sadale, S.B. 2005. Structural, electrical and optical properties of TiO2 doped WO3 thin films. Applied Surface Science 252: 1643-1650.

Redecka, M., Rekas, M., Trenczek-Zajac, A. & Zakrzewska, K. 2008. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. Journal of Power Sources 181: 46-55.

Redecka, M., Sobas, P., Wierzbicka, M. & Rekas, M. 2005.  Photoelectrochemical properties of undoped and Ti-doped WO3. Physica B 364: 85-92.

Scarminio, J., Urbano, A. & Gardes, B. 1999. The Beer-Lambert law for electrochromic tungsten oxide thin films. Materials Chemistry and Physics 61: 143-146.

Sivakumar, R., Jayachandran, M. & Sanjeeviraja, C. 2004. Studies on the effect of substrate temperature on (VI-VI) textured tungsten oxide (WO3) thin films on glass, SnO2:F substrates by PVD:EBE technique for electrochromic devices. Materials Chemistry and Physics 87: 439-445.

Solarska, R., Alexander, B.D., Braun, A., Jurczakowski, R., Fortunato, G., Stiefel, M., Graule, T. & Augustynski, J. 2010. Tailoring the morphology of WO3 films with substitutional cation doping: Effect on the photoelectrochemical properties. Electrochimica Acta 55: 7780-7787.

Song, S., Wang, C., Hong, F., He, Z., Cai, Q. & Chen, J. 2011. Gallium- and iodine-co-doped titanium dioxide for photocatalytic degradation of 2-chlorophenol in aqueous solution: Role of gallium. Applied Surface Science 257: 3427-3432.

Su, L., Dai, Q. & Lu, Z. 1999. Spectroelectrochemical and photoelectrochemical studies of electrodeposited tungsten trioxide films. Spectrochimica Acta Part A55: 2179-2185.

Su, L., Wang, H. & Lu, Z. 1998. All-solid-state electrochromic window of prussian blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte. Material Chemistry and Physics 56: 226-270.

Sun, Y., Murphy, C.J., Reyes-Gil, K.R., Reyes-Garcia, E.A., Thornton, J.M., Morris, N.A. & Raftery, D. 2009. Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. International Journal of Hydrogen Energy 34: 8476-8484.

Tong, M. Dai, G. & Gao, D. 2001. WO3 thin film sensor prepared by sol-gel technique and its low-temperature sensing properties to trimethylamine. Materials Chemistry and Physics 69: 176-179.

Yagi, M., Maruyama, S., Sone, K., Nagai, K. & Norimatsu, T. 2008. Preparation and photoelectrocatalytic activity of a nano-structured WO3 platelet film. Journal of Solid State Chemistry 181: 175-182.

*Pengarang untuk surat-menyurat; email: lorna_jm@ukm.my

 

 

 

sebelumnya