Sains Malaysiana 41(8)(2012): 993–1000
Effects of Rf Power on Structural Properties of Nc-Si:H Thin
FilmsDeposited
by Layer-By-Layer (LbL) Deposition Technique
(Kesan Kuasa Rf
Terhadap Sifat-Sifat Struktur Filem Nipis Nc-Si:H yang dimendapkan denganMenggunakan
Teknik Lapisan Demi Lapisan (LbL)
Goh Boon Tong*, Muhamad Rasat Muhamad
& Saadah Abdul Rahman
Low Dimensional
Materials Research Centre, Department of Physics
University of Malaya, 50603 Kuala Lumpur, Malaysia
Diserahkan: 5 Oktober
2011 / Diterima: 15 Mac 2012
ABSTRACT
The effects of rf power on the structural properties of
hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited using
layer-by-layer (LbL) deposition technique in a home-built plasma enhanced
chemical vapor deposition (PECVD) system were investigated. The properties of the films were
characterized by X-ray diffraction (XRD), micro-Raman scattering spectroscopy,
high resolution transmission electron microscope (HRTEM) and Fourier transform infrared (FTIR) spectroscopy. The
results showed that the films consisted of different size of Si crystallites
embedded within an amorphous matrix and the growth of these crystallites was
suppressed at higher rf powers. The crystalline volume fraction of the films
was optimum at the rf power of 60 W and contained both small and big
crystallites with diameters of 3.7 nm and 120 nm, respectively. The hydrogen
content increased with increasing rf power and enhanced the structural disorder
of the amorphous matrix thus decreasing the crystalline volume fraction of the
films. Correlation of crystalline volume fraction, hydrogen content and
structure disorder of the films under the effect of rf power is discussed.
Keywords: Crystalline volume fraction; hydrogen content;
layer-by-layer deposition; ncSi:H; XRD
ABSTRAK
Dalam penyelidikan ini, kesan kuasa rf terhadap struktur
filem nipis nanohablur silikon berhidrogen (nc-Si:H) yang dimendapkan
menggunakan teknik lapisan demi lapisan (LbL) daripada sistem pemendapan wap
kimia secara peningkatan plasma (PECVD) buatan sendiri telah dikaji. Sifat-sifat
struktur filem nipis ini dikaji dengan kaedah belauan sinar-X (XRD), spektroskopi
penyebaran mikro-Raman, mikroskopi elektron imbasan beresolusi tinggi (HRTEM) dan spektroskopi
transformasi Fourier inframerah (FTIR). Keputusan menunjukkan bahawa filem nipis
ini mengandungi hablur nano Si yang berlainan saiz yang terbenam dalam matriks
amorfus. Pertumbuhan hablur nano Si ini terbantut pada kuasa rf yang lebih
tinggi. Pecahan isi padu hablur filem nipis ini mencapai nilai optimum pada
kuasa rf 60 W yang mengandungi kristalit silikon yang bersaiz kecil dan besar
dengan diameter 3.7 and 120 nm. Kandungan hidrogen meningkat dengan menambahkan
kuasa rf. Ini meningkatkan struktur tak tertib matriks amorfus dan pecahan isi
padu hablur dalam filem nipis dapat dikurangkan. Korelasi di antara pecahan isi
padu hablur, kandungan hidrogen dan struktur tak tertib filem nipis dengan
kesan kuasa rf dibincangkan.
Kata kunci: Kandungan
hydrogen; nc-Si:H; pemendapan LbL; XRD; pecahan isipadu
hablur
RUJUKAN
Adhikary, K. &
Ray, S. 2007. Characteristics of p-type nanocrystalline silicon thin films
developed for window layer of solar cells. J. Non-Cryst. Solids 353:
2289-2294.
Ali, A.M. 2006.
Mechanisms of the growth of nanocrystalline Si:H films deposited by PECVD. J.
Non-Cryst. Solids 352: 3126-3133.
Alpuim, P. & Chu,
V. 1999. Amorphous and microcrystalline silicon films grown at low temperatures
by radio-frequency and hot-wire chemical vapor deposition. J. Appl. Phys. 86:
3812-10.
Ambrosone, G., Coscia,
U., Lettieri, S., Maddalena, P. & Minarini, C. 2003. Optical, structural
and electrical properties of μc-Si:H films deposited by SiH4+H2. Mater. Sci. & Eng. B 101: 236-241.
Baghdad, R.,
Benlakehal, D., Portier, X., Zellama, K., Charvet, S., Sib, J.D., Clin, M.
& Chahed, L. 2008. Deposition of nanocryctalline silicon thin films: Effect
of total pressure and substrate temperature. Thin Solid Films 516:
3965-3970.
Bhattacharya, E. &
Mahan, A.H. 1988. Microstructure and the light-induced metastability in
hydrogenated amorphous silicon. Appl. Phys. Lett. 52: 1587-3.
Brodsky, M.H.,
Cardona, M. & Cuomo, J.J. 1977. Infrared and Raman spectra of the
silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and
sputtering. Phys. Rev. B 16: 3556-3571.
Cabarrocas, P. &
Roca, I. 2004. New approaches for the production of nano-, micro-, and
polycrystalline silicon thin films. Phys. Status Solidi (c) 1(5):
1115-1130.
Chen, X.Y., Chen,
W.Z., Chen, H., Zhang, R. & He, Y.L. 2006. High electron mobility in well
ordered and lattice-strained hydrogenated nanocrystalline silicon. Nanotechnology 17: 595-599.
Choi, W.C., Kim, E.K.,
Min, S.-K., Park, C.Y., Kim, J.H. & Seong, T.-Y. 1997. Direct formation of
nanocrystalline silicon by electron cyclotron resonance chemical vapor
deposition. Appl. Phys. Lett. 70: 3014-3.
Goh, B.T. &
Rahman, S.A. 2006. Effect of substrate temperature on the properties of
hydrogenated nanocrystalline silicon thin film grown by layer-by-layer
technique. Proceeding of the IEEE International Conference on Semiconductor
Electronics 2006 (ICSE2006). Kuala Lumpur. Malaysia: IEEEXplore. pp.
472-476.
Goh, B.T., Gani, S.M.
Ab. & Rahman, S.A. 2008. Influence of hydrogen dilution of silane on the
properties of nc-Si:H films grown by layer-by-layer deposition technique. Adv.
Mater. Res. 31: 80-82.
Goh, B.T., Gani, S. M.
Ab. & Rahman, S.A. 2008b. Crystallinity and Si-H Bonding Configuration of
nc-Si:H films grown by layer-by-layer (LBL) deposition technique at different
rf power. Sains Malaysiana 37(3): 233-237.
Goh, B.T., Gani, S.M.
Ab., Muhamad, R.M. & Rahman, S.A. 2009. Influence of bias voltage on the
optical and structural properties of nc-Si:H films grown by layer-by-layer (LBL)
deposition technique. Thin Solid Films 517: 4945-4949.
Goswani, R. & Ray,
S. 2007. Study of Medium-Range Order and Defects in Hydrogenated
Protocrystalline Silicon Films Deposited by Radio Frequency Plasma Enhanced
Chemical Vapor Deposition. Jpn. J. Appl. Phys. 46(11): 7188-7193.
Hatzopoulos, A.T.,
Pappas, I., Tassis, D.H., Arpatzanis, N., Dimitriadisa, C.A., Templier, F.
& Oudwan, M. 2006. Analytical current-voltage model for nanocrystalline
silicon thin-film transistors. Appl. Phys. Lett. 89: 193504-3.
Hazra, S., Saha, S.C.
& Ray, S. 1999. Polycrystalline silicon thin films prepared by plasma
enhanced chemical vapour deposition at 200°C using fluorinated source gas. J.
Phys. D: Appl. Phys. 32: 208-212.
Huet, S., Viera, G.
& Boufendi, L. 2002. Effect of small crystal size and surface temperature
on the Raman spectra of amorphous and nanostructured Si thin films deposited by
radiofrequency plasmas. Thin Solid Films 403-404: 193-196.
Itoh, T., Yamamoto,
K., Ushikoshi, K., Nonomura, S. & Nitta, S. 2000. Characterization and role
of hydrogen in nc-Si:H. J. Non-Cryst. Solids 266-269: 201-205.
Klung, H.P. &
Alexander, L.E. 1974. X-ray Diffraction Procedures. New York: Wiley.
Knights, J.C., Lujan,
R.A., Rosenblum, M.P., Street, R.A., Bieglesen, D.K. & Reimer, J.A. 1981.
Effects of inert gas dilution of silane on plasma-deposited a-Si:H
films. Appl. Phys. Lett. 38: 331-3.
Lin, C.-Y., Fang,
Y.-K., Chen, S.-F., Lin, P.-C., Lin, C.-S., Chou, T.-H., Hwang, J.S. & Lin,
K.I. 2006. Growth of nanocrystalline silicon thin film with layer-by-layer
technique for fast photo-detecting applications. Mater. Sci. & Eng. B 127:
251-254.
Lucovksy, G., Nemanich, R.J. & Knights, J.C. 1979.
Structural interpretation of the vibrational spectra of a-Si: H alloys. Phys.
Rev. B 19: 2064-2073.
Raha,
D. & Das, D. 2008. Hydrogen induced promotion of nanocrystallization from
He-diluted SiH4 plasma. J. Phys. D: Appl. Phys. 41: 085303-9.
Ruther, R. &
Livingstone, J. 1994. Hydrogenated amorphous silicon: Hydrogen content, bonding
configurations and morphology in sputter-deposited, in-chamber annealed thin
films. Thin Solid Films 251: 30-35.
Swain, B.P& Hwang,
N.M. 2009. Effect of negative substrate bias on HWCVD deposited nanocrystalline
silicon (nc-Si) films. Solid State Sci. 11: 467-471.
Torchynska, T.V. 2009.
Emission of Si nanoclusters of different phases in amorphous hydrogenated
silicon. Superlattices & Microstructures 45: 267-270.
Viera, G., Huet, S.
& Boufendi, L. 2001. Crystal size and temperature measurements in
nanostructured silicon using Raman spectroscopy. J. Appl. Phys. 90:
4175-9.
Wang, J.L. & Wu,
E.X. 2007. Characterization of doped hydrogenated nanocrystalline silicon films
prepared by plasma enhanced chemical vapour deposition. Chin. Phys. 16:
848-06.
Wang, K., Canning, A.,
Weinberg-Wolf, J.R., Harley, E.C.T & Han, D. 2004. Correlation of
Hydrogenated Nanocrystalline Silicon Microstructure and Solar Cell Performance. Mat. Res. Soc. Symp. Proc. 808: A9.53.1-6.
Yue, G., Yan, B.,
Ganguly, G., Yang, J., Guha, S. & Teplin, C.W. 2006. Material structure and
metastability of hydrogenated nanocrystalline silicon solar cells. Appl.
Phys. Lett. 88: 263507-3.
*Pengarang surat-meneyurat; email: boontong77@yahoo.com
|