Sains Malaysiana 42(11)(2013): 1549–1555
Synergistic
and Antagonistic Effects of Zinc Bioaccumulation with Lead and
Antioxidant
Activities in Centella asiatica
(Kesan Sinergistik dan Antagonistik oleh Bioakumulasi Zink dengan
Plumbum dan
Aktiviti Antioksidan di Centella asiatica)
G.H. ONG1, C.K.
YAP1*, M.
MAZIAH2 & S.G. TAN3
1Department of Biology, Faculty of Science, Universiti
Putra Malaysia
43400 UPM, Serdang, Selangor, Malaysia
2Department of Biochemistry, Faculty of Biotechnology
and Biomolecular Sciences
Universiti Putra Malaysia, 43400 UPM, Serdang,
Selangor, Malaysia
3Department of Cell and Molecular Biology, Faculty of Biotechnology
and Biomolecular Sciences
Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
Diserahkan: 13 Jun 2012 /Diterima: 9 April 2013
ABSTRACT
This study was carried out by using Centella asiatica grown using a hydroponic
system under laboratory conditions to study synergistic and antagonistic
effects of Zn bioaccumulation with added Pb and the changes in antioxidant
activities in leaves and roots of C. asiatica. The antioxidant
activities included superoxide dismutase (SOD),
catalase (CAT), ascorbate peroxidase (APX)
and guaiacol peroxidase (GPX). The treatments Zn (2 ppm) + Pb
(0.4 ppm) and Zn (4 ppm) + Pb (0.6 ppm) increased the accumulation of Zn in
leaves by 14.06 and 16.84%,
respectively, but decreased by 7.36% uptake in roots (Zn 4 ppm + Pb 0.6 ppm).
This showed that Pb and Zn acted synergistically to Zn accumulation in leaves
but antagonistically in roots. CAT and SOD activities
in leaves were increased when Zn was added together with Pb. In roots, CAT, APX and SOD activities were increased but GPX was
decreased. Owing to their sensitivities to Zn with Pb, SOD and CAT could be used as biomarkers to monitor the toxicity of Pb and Zn
exposure in the leaves and roots of C. asiatica.
Keywords: Antagonistic; antioxidant activities; Centella asiatica; synergistic
ABSTRAK
Kajian ini telah dijalankan dengan Centella asiatica secara hidroponik dalam keadaan
makmal untuk mengkaji kesan sinergistik dan antagonistik bioakumulasi
Zn ditambah dengan Pb dan perubahan dalam aktiviti antioksidan dalam
daun dan akar C. asiatica. Aktiviti antioksidan termasuk
superokside dimustase (SOD),
katalase (CAT), peroksidase askorbat (APX)
dan peroksidase guaiacol (GPX). Rawatan Zn (2 ppm) + Pb (0.4 ppm)
dan Zn (4 ppm) + Pb (0.6 ppm) menunjukkan pengumpulan Zn dalam daun
sebanyak 14.06 dan 16.84%
masing-masing tetapi menurun sebanyak 7.36% dalam pengambilan akar
(Zn 4 ppm + Pb 0.6 ppm). Ini menunjukkan bahawa Pb dan Zn bertindak
secara sinergistik untuk pengumpulan Zn dalam daun tetapi antogonistik
dalam akar. Aktiviti CAT
dan SOD
dalam daun meningkat apabila Zn ditambah bersama dengan
Pb. Dalam akar, CAT, APX dan SOD telah
meningkat tetapi GPX telah menurun. Disebabkan sentiviti
kepada Zn dengan Pb, SOD dan CAT boleh
digunakan sebagai penanda biologi untuk memantau ketoksikan pendedah
Pb dan Zn dalam daun dan akar C. asiatica.
Kata kunci: Aktiviti antioksidan; antagonistik; Centella asiatica; sinergistik
RUJUKAN
Aebi, H. 1984. Catalase in vitro. Methods
Enzymol. 105: 121-126.
Aery, N.C. & Rana, D.K. 2007. Interactive
effects of Zn, Pb and Cd in barley. J. Environ. Sci. Eng. 49(1): 71-76.
An, Y.J., Kim, Y.M., Kwon, T.I. & Jeong,
S.W. 2004. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci. Total Environ. 326: 85-93.
Beauchamp, C. & Fridovich, I. 1971.
Superoxide dismutase: Improved assays and an assay applicable to acrylamide
gels. Anal. Biochem. 44: 276-287.
Blaylock, M.J. & Huang, J.W. 1999. Phytoextraction
of metals. In Phytoremediation of Toxic Metals: Using Plants
to Clean up the Environment, edited by Raskin, I. & Ensley,
B.D. New York: John Wiley & Sons Inc. pp. 53-70.
Bradford, M.M. 1976. A rapid and sensitive
method for the quantitation of microgram quantities of protein utilizing the
principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brinkhaus, B., Lindner, M., Schuppan, D. &
Hahn, E.G. 2000. Review Article: Chemical, pharmacological and clinical profile
of the East Asian medical plant Centella asiatica. Phytomedicine 7(5):
427-448.
Broadley, M.R., White, P.J., Hammond, J.P., Zelko,
I. & Lux, A. 2007. 'Zinc in plants'. New Phytologist 173(4):
677-702.
Clemens, S., Palmgren, M.G. & Kramer, U.
2002. A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci. 7: 309-315.
Cobbett, C.S. 2000. Phytochelatins and their
roles in heavy metal detoxification. Plant Physiol. 123: 825-832.
de Abreu, C.A., de Abreu, M.F. & de Andrade,
J.C. 1998. Distribution of lead in the soil profile evaluated by DTPA and
Mehlich-3 solutions. Bragantia. 57: 185-192.
Eick, M.J., Peak, J.D., Brady, P.V. & Pesek,
J.D. 1999. Kinetics of lead adsorption and desorption on goethite: Residence
time effect. Soil Sci. 164: 28-39.
Foyer, C.H. & Noctor, G. 2005. Redox
homeostasis and antioxidant signaling: A metabolic interface between stress
perception and physiological responses. The Plant Cell. 17(7):
1866-1872.
Foyer, C.H., Noctor, G., Buchanan, B., Dietz,
K.J. & Pfannschmidt, T. 2009. Redox regulation in photosynthetic organisms:
Signaling, acclimation and practical implications. Antioxid. Redox. Signal. 11(4):
861-905.
Hemeda, H.M. & Klein, B.P. 1990. Effects of
naturally occurring antioxidants on peroxidase activity of vegetable extracts. J.
Food Sci. 55: 184-185.
Israr, M., Jewell, A., Kumar, D., Shivendra, V.
& Sahi, S.V. 2011. Interactive effects of lead, copper, nickel and zinc on
growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J. Hazard Mater. 186: 1520-1526.
Kopittke, P.M., Blamey, F.P.C., Asher, C.J.
& Menzies, N.W. 2010. Trace metal phytotoxicity in solution culture: A
review. J. Exp. Bot. 61(4): 945-954.
Kuk, Y.I., Shin, J.S., Burgos, N.R., Hwang,
T.E., Han, O., Cho, B.H., Jung, S. & Guh, J.O. 2003. Antioxidative enzymes
offer protection from chilling damage in rice plants. Crop Sci. 43:
2109-2117.
Lichtenthaler, H.K. 1998. The stress concept in
plants: An introduction. Ann. NY. Acad. Sci. 851: 187-198.
Meers, E., Vandecasteele,
B., Ruttens, A., Vangronsveld, J. & Tack, F.M.G. 2007. Potential of five
willow species (Salix spp.) for phytoextraction of heavy metals.nviron.
Exp. Bot. 60: 57-68.
Miransari, M. 2011. Hyperaccumulators,
arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol. Adv. 29(6):645-
653.
Mishra, S., Srivastava, S., Tripathi, R.D., Govindarajan, R.,
Kuriakose, S.V. & Prasad, M.N.V. 2006. Phytochelatin synthesis and response
of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol.
Biochem. 44: 25-37.
Mittler, R., Vanderauwera, S., Gollery, M. & Breusegem, F.V.
2004. Abiotic stress series. Reactive oxygen gene network of plants. Trends
Plant Sci. 9(10): 490-498.
Nakano, Y. & Asada, K. 1981. Hydrogen peroxide is scavenged by
ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:
867-880.
Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D. & Hancock,
J.T. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in
plants. J. Exp. Bot. 53: 1237-1247.
Parra-Lobato, M.C., Fernandez-Garcia, N., Olmos, E., Alvarez-
Tinaut, M.C. & Gomez- Jimenez, M.C. 2009. Methyl jasmonate-induced
antioxidant defence in root apoplast from sunflower seedlings. Environ. Exp.
Bot. 66(1): 9-17.
Peng, H.Y., Tian, S.K. & Yang, X.E. 2005. Changes of root
morphology and Pb uptake by two species of Elsholtzia under Pb toxicity. J.
Zhejiang Univ. Sci. B. 6(6): 546-552.
Rout, G.R. & Das, P. 2009. Effect of metal toxicity on plant
growth and metabolism: I. zinc. Sustainable Agriculture 7: 873-884.
Sarvajeet, S.G. & Narendra, T. 2010. Reactive oxygen species
and antioxidant machinery in abiotic stress tolerance in crop plants. Plant
Physiol. Biochemistr. 48: 909-930.
Schützendübel, A. & Polle, A. 2002. Plant responses to abiotic
stresses: Heavy metal-induced oxidative stress and protection by
mycorrhization. J. Exp. Bot. 53(372): 1351-1365.
Sharma, P. & Dubey, R.S. 2005. Lead toxicity in plants. Braz.
J. Plant Physiol. 17(1): 35-52.
Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. 2012.
Reactive oxygen species, oxidative damage, and antioxidative defense mechanism
in plants under stressful conditions. Journal of Botany doi: 10.1155/2012/217037.
Singh, J., Upadhyay, A.K., Bahadur, A., Singh, B., Singh, K.P.
& Rai, M. 2006. Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci. Hortic. 108: 233- 237.
Singh, S. & Sinha, S. 2005. Accumulation of metals and its
effect in Brassica juncea L. Czern. (var. rohini) grown on various
amendments of tannery waste. Ecotoxicol. Environ. Saf. 62: 122-127.
Sinha, P., Dube, B.K., Srivastava, P. & Chatterjee, C. 2006.
Alteration in uptake and translocation of essential nutrients in cabbage by
excess lead. Chemosphere 65(4): 651-656.
Soares, C.R.F.S., Accioly, A.M.A., Marques, T.C.L.L.S., Siqueira,
J.O. & Moreira, F.M.S. 2001. Accumulation and distribution heavy
metals in root, stems and leaves of tree seedlings in soil contaminated
by zinc industry wastes. Rev. Bras. Fis. Veg. 13: 302-315.
Starzynska, A., Leza, M. & Mareczek, A. 2003. Physiological
changes in the antioxidant system of broccoli flower buds senescence during
short term storage, related to temperature and packaging. Plant Sci. 165:
1387-1395.
Street, R.A., Kulkarni, M.G., Stirk, W.A., Southway, C.,
Abdillahi, H.S., Chinsamy, M. & Van Staden, J. 2009. Effect of cadmium
uptake and accumulation on growth and antibacterial activity of Merwilla
plumbea- an extensively used medicinal plant in South Africa. S. Afr. J.
Bot. 75(3): 611-616.
Stroinski, A. & Kozlowska, M. 1997. Cadmium induced oxidative
stress in potato tuber. Acta Soc. Bot. Pol. 66: 189-195.
Tang, Y.T., Qiu, R.L., Zheng, X.W., Ying, R.R., Yu, F.M. &
Zhou, Z.Y. 2009. Lead, zinc, cadmium hyperaccumulation and growth stimulation
in Arabis paniculata Franch. Environ. Exper. Bot. 66: 126-134.
Verma, S. & Dubey, R.S. 2003. Lead toxicity induces lipid
peroxidation and alters the activities of antioxidant enzymes in growing rice
plants. Plant Sci. 164: 645-655.
WHO. 1999. Monographs on Selected Medicinal Plants. 1:
77-85.
Wong, M.K., Chuah, G.K., Ang, K.P. & Koh, L.L. 1986.
Interactive effects of lead, cadmium and copper combinations in the uptake of
metals and growth of Brassica chinensis. Environ. Exper. Bot. 26(4):
331-339.
Wu, Y., Wang, X., Li, Y. & Ma, Y. 1995. Compound pollution of
Cd, Pb, Cu, Zn and As in plant soil system and its prevention. J. Environ.
Sci. 8(4): 474-482.
Yan, C., Li, G., Xue, P., Wei, Q. & Li, Q. 2010. Competitive
effect of Cu (II) and Zn(II) on the biosorption of lead(II) by Myriophyllum
spicatum. J. Hazard Mater. 179: 721-728.
Yang, X., Long, X.X., Ni, W.Z. & Fu, C.X. 2002. Sedum
alfredii H: A new Zn hyperaccumulating plant first found in China. Chin.
Sci. Bull. 47: 1634-1637.
Yap, C.K., Mohd Fitri, M.R., Mazyhar, Y. & Tan, S.G. 2010.
Effect of metal-contaminated soils on the accumulation of heavy metal in
different parts of Centella asiatica: A laboratoty study. Sains
Malaysiana 39: 347-352.
Zar, J.H. 1996. Biostatistical Analysis. 3rd ed. New Jersey:
Prentice Hall.
Zheljazkov, V.D., Craker, L.E. & Xing, B. 2006. Effects of Cd,
Pb, and Cu on growth and essential oil contents in dill, peppermint,
and basil. Envrion. Exp. Bot. 58: 9-16.
*Corresponding author; email: yapckong@hotmail.com
|