Sains Malaysiana 42(12)(2013): 1689–1696

 

Isoterma dan Kinetik Penjerapan Boron oleh Batu Kapur  Sebagai Penjerap Berkos Rendah

(Isotherm and Kinetic Adsorption of Boron onto Limestone As a Low-cost Adsorbent)

 

 

A.A. HALIM* & MOHD. FIRHAD AHMAD

Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Diserahkan: 27 Januari 2012/Diterima: 18 Julai 2013

 

 

ABSTRAK

Kajian ini dijalankan untuk menentukan isoterma dan kinetik penjerapan bahan pencemar boron daripada air sisa sintetik menggunakan batu kapur sebagai bahan penjerap berkos rendah. Penjerapan boron berlaku secara optimum pada julat pH6-8, masa sentuhan pada 90 min dan dos batu kapur 240 g/L yang penyingkirannya mencapai 40%. Isoterma penjerapan lebih diwakili oleh model Freundlich (R2 = 0.91) berbanding model Langmuir (R2 = 0.78) yang menunjukkan penjerapan secara multilapisan adalah dominan. Kajian kinetik penjerapan menunjukkan penjerapan boron ke atas batu kapur mematuhi dengan baik model penjerapan pseudo-tertib pertama (R2 = 0.93), pseudo-tertib kedua (R2 = 0.987), Elovich (R2 = 0.931) dan Intrapartikel (R2 = 0.960). Mekanisme penjerapan secara kimia adalah dominan berdasarkan nilaiR2 yang paling tinggi bagi model pseudo-tertib kedua.

 

Kata kunci: Batu kapur; penjerapan; penyingkiran boron

 

ABSTRACT

This study was performed to determine isotherm and kinetic adsorption of boron from synthetic wastewater using limestone as a low cost adsorbent. Boron adsorption was performed at optimum condition at pH range of 6-8, contact time of 90 min and limestone dosage of 240 g/L where the boron removal was achieved at 40%. Adsorption isotherm of boron on limestone was more representative by Freundlich model (R2 = 0.91) rather than Langmuir model (R2 = 78) indicated that multilayer adsorption was dominance. The kinetic study indicated that the adsorption of boron on limestone well obeyed pseudo-first order model (R2 = 0.780), pseudo-second order (R2 = 0.987), Elovich (R2 = 0.931) and Intra-particle model (R2 = 0.960). Chemically adsorption mechanisms were dominant in this study based on the highest R2 for pseudo-second order model.

 

Keywords: Adsorption; boron removal; limestone

RUJUKAN

Aksu, Z. & Gonen, F. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves. Process Biochemical 39(3): 599-613.

Alias, N.H.M., Halim, A.A. & Wahab, M.I.A. 2011. Boron removal from aqueous solutions using composite adsorbent based on carbon-mineral. Sains Malaysiana40(11): 1271- 1276.

APHA. 2005. Standard Methods for Examination of Water and Wastewater. Edisi ke-21. Washington: American Public Health Association.

Aziz, H.A. 1997. Heavy metals removal from water and wastewater using limestone filtration technique: A potential use for small and medium industries. Journal Institution of Engineers Malaysia (IEM) 3: 27-35.

Benson, W.H., Birge, W.J. & Dorough, H.W. 1984. Absence of mutagenic activity of sodium borate (borax) and boric acid in the Salmonella preincubation test. Environmental Toxicology Chemical 3: 209-214.

Camacho, E.M. & Soto, F.G. 2006. Boron removal by means of adsorption with magnesium oxide. Separation and Purification Technology 48(1): 36-44.

Cheung, C.W., Porter, J.F. & McKay, G. 2000. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. Journal of Chemical Technology & Biotechnology 75: 963-970.

Halim, A.A., Nor Alia Roslan, Nor Shamsiah Yaacub & Mohd. Talib Latif. 2013. Boron removal from aqueous solution using curcumin-impregnated activated carbon. Sains Malaysiana42(9): 1293-1300.

Halim, A.A., Abdul Fattah Abu Bakar, Megat Ahmad Kamal Megat Hanafiah & Haslizaidi Zakaria. 2012a. Boron removal from aqueous solutions using curcumin-aided electrocoagulation. Middle-East Journal of Scientific Research 11(5): 583-588.

Halim, A.A., Nur Hanani Thaldiri, Normah Awang & Mohd Talib Latif. 2012b. Removing boron from an aqueous solution using turmeric extract-aided coagulation-flocculation. American Journal of Environmental Sciences 8(3): 322-327.

Hamidi Abdul Aziz, Mohd Suffian Yusoff, Mohd Nordin Adlan, Nurul Hidayah Adnan & Salina Alias. 2004. Physico-chemical removal of ion from semi-aerobic landfill leachatev by limestone filter. Waste Management 24: 353-358.

Kavak, D. 2009. Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design. Journal of Hazardous Materials 163(1): 308-314.

Kavak, D. & Öztürk, N. 2005. Adsorption of boron from aqueous solutions using fly ash: Batch and column studies. Journal of Hazardous Material 127: 81-88.

Keren, R., Gas, t R.G. & Bar-Yosef, B. 1981. Ph-dependent boron adsorption by Namontmorillonite. Soil Science Society of America Journal 45: 45-48.

Litovitz, T.L., Klein-Schwartz, W., Oderda, G.M. & Schmitz, B.F. 1988. Clinical manifestations of toxicity in a series of 784 boric acid ingestions. The American Journal of Emergency Medicine 6: 209-213.

Lu, J.C.S. 1985. Leachate from Municipal Landfill, Production and Management. Park Ridge: Noyes Pub.

Mance, G., O_Donnell, A.R. & Smith, P.R. 1988. Proposed environmental quality standards for List II substances in water: Boron. Medmenham. Water Research Centre.

Meghea, A., Rehner, H.H., Peleanu, I. & Mihalache, R. 1998. Test-fitting on adsorption isotherms of organic pollutants from waste waters on activated carbon. J. Radioanal. Nucl. Chem. 229: 105-110.

Morales, G.V., Capretto, M.E., Fuentes, L.M. & Quiroga, O.D. 2000. Dissolution kinetics of hydroborocite in water saturated with carbon dioxide. Hydrometallurgy 58: 127-133.

Nacera, Y. & Bensmaili, A. 2005. Kinetic models for the sorption of dye from aqueous solution by clay-wood sawdust mixture. Desalination 185: 499–508.

Rai, D. 1986. Chemical Attenuation Rates, Coefficients, and Constants in Leachate Migration. Vol. 1: A Critical Review. Report to Electric Power Research Institute, Palo Alto, CA, by Battelle Pacific Northwest Laboratories, Richland, WA.

Thomas, J.M. & Thomas, W.J. 1997. Principle and Practice of Heterogeneous Catalysis. Weinheim: VCH.

Wang, X., Xia, S., Chen, L., Zhao, J., Chovelon, J. & Nicole, J. 2006. Biosorption of cadmium(I1) and lead(I1) ions from aqueous solutions onto dried activated sludge. Journal of Environmental Sciences 18: 840-844.

WHO. 1998. Boron. Geneva, World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria monograph).

Yilmaz, Kabay, N., Brjyak, M., Yuksel, M., Wolska, J. & Koltuniewicz, A. 2006. A submerged membrane-ion-exchange hybrid process for boron removal. Desalination 198: 310-315.

 

 

*Pengarang untuk surat-menyurat; email: azharhalim@ukm.my