Sains Malaysiana 42(12)(2013): 1805–1810
Cho
Abelian Decomposition of Monopole-Antimonopole Pair Gauge Potentials
(Penghuraian Abelan Cho kepada Keupayaan Tolok Pasangan Monokutub-Antimonokutub)
KHAI-MING WONG*, PEI-YEN TAN & ROSY THE
School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Diserahkan: 19
November 2012/Diterima: 1 April 2013
ABSTRACT
Recently we have reported on standard MAP and generalized
Jacobi Elliptic monopole-antimonopole pair (MAP)
solutions of the SU(2) Yang-Mills-Higgs model. Here we apply
Cho Abelian decomposition to the gauge potential of
these MAP solutions. It is shown that the point singularities at the
locations of the monopole (antimonopole), that comes from the restricted part, are removed by the
unrestricted valence potential. We also consider the effect of decomposition
upon energy and magnetic charge density for the cases of standard MAP and
generalized Jacobi elliptic MAP solutions, under the conditions of
vanishing (λ = 0) and non vanishing (λ = 1) Higgs potential.
Keywords: Cho Abelian decomposition;
monopole; Yang-Mills-Higgs
ABSTRAK
Sebelum ini, kami telah melaporkan penyelesaian MAP-piawai dan pasangan monokutub-antimonokutub (MAP)
Jacobi Eliptik umum kepada model SU(2)
Yang-Mills-Higgs. Di sini kami menggunakan kaedah penghuraian Abelian Cho ke atas keupayaan tolok penyelesaian tersebut. Kami menunjukkan titik tak-terhingga di lokasi monokutub (antimonokutub) yang berasal daripada bahagian terhad boleh dipadamkan oleh keupayaan valens. Kami juga mengambil kira kesan penghuraian ke atas tenaga dan ketumpatan cas magnet bagi kes MAP-piawai dan penyelesaian MAP Jacobi eliptik, dalam keadaan keupayaan Higgs lenyap (λ = 0) dan tidak lenyap (λ = 1).
Kata kunci: Monokutub; penghuraian abelian Cho; Yang-Mills-Higgs
REFERENCES
Arafune, J., Freund, P.G.O. & Goebel, C.J. 1975. Topology of Higgs fields. J. Math. Phys. 16: 433-437.
Bogomol 'nyi, E.B. 1976. The stability
of classical solutions. Sov.
J. Nucl. Phys. 24: 449-454.
Cho, Y.M. 1980. Restricted gauge theory. Phys.
Rev. D 21: 1080-1088.
Cho, Y.M. 1981. Extended gauge theory and its
mass spectrum. Phys. Rev. D 23: 2415-2426.
Cho, Y.M., Lee, H.W. &
Pak, D.G. 2002. Faddeev-Niemi conjecture and
effective action of QCD. Phys. Lett. B 525:347-354.
Cho, Y.M. & Pak, D.G. 2002. Monopole
condensation in SU(2) QCD. Phys. Rev. D 65:
074027.
Cho, Y.M., Kim, S.W. & Kim, J.H. 2008. Abelian decomposition of Einstein's theory:Reformulation of general
relativity. hep-th/0702200.
Faddeev, L. & Niemi, A. 1999a. Partially dual variables in SU(2)
Yang-Mills theory. Phys. Rev. Lett. 82:
1624-1627.
Faddeev, L. & Niemi, A. 1999b. Partial duality in SU(N) Yang- Mills
theory'. Phys. Lett. B 449: 214-218.
Forgács, P., Horvárth,
Z. & Palla, L. 1981a. Exact multimonopole
solutions in the Bogomol 'nyi-Prasad-Sommerfield limit. Phys. Lett.
B 99: 232-236.
Forgács, P., Horvárth,
Z. & Palla, L. 1981b. Non-linear superposition of
monopoles. Nucl. Phys. B 192:
141-158.
Kleihaus, B.
& Kunz, J. 2000. Monopole-antimonopole solution
of the SU(2) Yang-Mills-Higgs model. Phys. Rev. D 61:
025003.
Manton, N.S. 1977. The Force Between 't Hooft-Polyakov monopoles. Nucl.
Phys. (N.Y.) B 126: 525-541.
Ng, B.L., Teh, R.
& Wong, K.M. 2012. The Numerical Procedures: One-Half Monopole Solutions. National
Conference on Physics, PERFIK 2012, Colmar Tropicale,
Bukit Tinggi, Pahang, November 19-21.
Polyakov, A.M.
1974. Particle spectrum in quantum field theory. JETP Lett. 20: 194-195.
Prasad, M.K. 1981. Exact Yang-Mills-Higgs monopole solutions of abritary charge. Commun.
Math. Phys. 80: 137-149.
Prasad, M.K. & Sommerfield, C.M.
1975. Construction of exact multimonopole solutions. Phys. Rev. Lett. 35:
760-762.
Prasad, M.K. & Rossi, P. 1981. Construction
of exact multimonopole solutions. Phys.
Rev. D 24: 2182-2199.
Rebbi, C.
& Rossi, P. 1980. Multimonopole solutions in the Prasad-Sommerfield limit. Phys. Rev.
D 22: 2010-2017.
't Hooft,
G. 1974. Magnetic monopoles in unified gauge theories. Nucl.
Phys. B 79: 276-284.
Teh, R. & Wong, K.M. 2005a. Monopole-antimonopole and vortex rings.
J. Math. Phys. 46: 082301.
Teh, R. & Wong, K.M. 2005b. Static monopoles and their anticonfigurations. Int. J. Mod. Phys. A 20: 4291-4308.
Teh, R., Ng, B.L. & Wong, K.M. 2012. Finite Energy One-half Monopole Solutions of the SU(2) Yang-Mills-Higgs Theory'. International Conference
on High Energy Physics, ICHEP 2012, Melbourne, Australia, July 4-11.
Teh, R., Tan, P.Y. & Wong, K.M. 2012. Jacobi elliptic monopole- antimonopole pair solutions. Int. J. Mod. Phys. A 27(26): 1250148.
Teh, R., Wong, K.M. & Lim, K.G. 2010. Generalized Jacobi elliptic one-monopole-Type A. Int. J. Mod. Phys A 25(31): 5731-5746.
Ward, R.S. 1981. A Yang-Mills-Higgs monopole of
charge 2. Commun. Math. Phys. 79:
317-325.
Weinberg, E.J. & Guth, A.H. 1976.
Nonexistence of spherically symmetric monopoles with multiple magnetic charge. Phys. Rev. D 14: 1660-1662.
*Pengarang untuk surat-menyurat; email: kmwong@usm.my
|