Sains
Malaysiana 42(2)(2013): 205–211
Current
and Conductance Modulation at Elevated Temperature in Siliconand InAs-based
Spin
Field-Effect Transistors
(Modulasi Arus dan Konduktans
pada Suhu Tinggi dalam Transistor Silikon
dan InAs
Berasaskan Spin Kesan Medan)
Dmitri Osintsev*, ViktorSverdlov, AlexanderMakarov
& SiegfriedSelberherr
Institute
for Microelectronics, TU Wien, Gusshaustr, 27-29, Wien 1040,
Austria
Diserahkan:
7 Januari 2012 / Diterima: 21 Mei 2012
ABSTRACT
Spin field-effect transistors
(SpinFETs) are promising candidates for future integrated microelectronic
circuits. A SpinFET is composed of two ferromagnetic contacts (source and
drain), which sandwich a semiconductor channel. Current modulation is achieved
by electrically tuning the gate voltage dependent strength of the spin-orbit
interaction in the semiconductor region. We investigated the properties of
SpinFETs for various parameters - the band mismatch, the barrier height between
the contacts and the channel and the strength of the spin-orbit coupling, for
various temperatures. We demonstrated that the creation of Schottky barriers
between the channel and the contacts guarantees a pronounced modulation of the
magnetoresistance sufficient to open a possibility to operate SpinFETs at room
temperature. We also demonstrated that silicon fins with [100] orientation
exhibit a stronger dependence on the value of the spin-orbit interaction and
are thus preferable for practical realization of silicon-based SpinFETs.
Keywords: Spin field-effect
transistor; spin-orbit interaction; temperature
ABSTRAK
Transistor spin kesan medan (SpinFETs) adalah calon yang menjanjikan masa depan
mikroelektronik litar bersepadu. SpinFET terdiri daripada dua
sentuhan feromagnetik (punca dan salir), antara saluran semikonduktor. Modulasi arus dicapai dengan pelarasan secara elektrik kekuatan voltan get
bergantung bagi interaksi orbit putaran di rantau semikonduktor. Sifat SpinFETs bagi pelbagai parameter - ketidaksepadanan jalur,
ketinggian sempadan di antara sentuhan dan saluran dan kekuatan gandingan
putaran orbit untuk pelbagai suhu telah dikaji. Ditunjukkan
bahawa pembentukan sempadan Schottky antara saluran dan sentuhan menjamin
modulasi ketara magnetorintangan yang mencukupi untuk membuka kemungkinan untuk
operasi SpinFETs pada suhu bilik. Ditunjukkan juga bahawa sirip silikon
dengan [100] orientasi menunjukkan pergantungan yang kuat kepada nilai
interaksi putaran orbit dan dengan itu lebih baik untuk realisasi praktikal
SpinFETs berasaskan silikon.
Kata
kunci: Interaksi spin-orbit; suhu; transistor spin kesan medan
RUJUKAN
Bournel, A.,
Dollfus, P., Bruno, P. & Hesto, P. 1998. Gate-induced spin precession in an
In0.53Ga0.47 as two dimensional
electron gas. European Physical Journal Applied
Physics 4: 1.
Büttiker, M.
1986. Four-terminal phase-coherent conductance. Physical
Review Letters 57: 1761-1764.
Cahay, M.
& Bandyopadhyay, S. 2004. Phase-coherent quantum mechanical spin transport
in a weakly disordered quasi-one-dimensional channel. Physical Review B 69(4):
045303.
Cheng, J.,
Wu, M. & Fabian, J. 2010. Theory of the spin relaxation
of conduction electrons in silicon. Physical Review Letters 104:
016601.
Dash, S.,
Sharma, S., Le Breton, J., Peiro, J., Jaffres, H., George, J-M., Lemaitre, A.
& Jansen, R. 2011. Spin precession and inverted Hanle effect in a
semiconductor near a finite-roughness ferromagnetic interface. Physical
Review B 85: 054410.
Datta, S. & Das, B. 1990. Electronic
analog of the electro-optic modulator. Applied Physics Letters 56(7):
665-667.
Dresselhaus,
G. 1955. Spin-orbit coupling effects in Zinc blende structures. Physical
Review 100: 580-586.
Huang, B., Monsma, D. & Appelbaum, I. 2007. Coherent
spin transport through a 350 micron thick silicon
wafer. Physical Review Letters 99: 177209.
Inokuchi, T., Ishikawa, M., Sugiyama, H., Saito, Y. & Tezuka,
N. 2012. Spin injection and detection between CoFe/AlOx junctions
and SOI investigated by Hanle effect measurements. Journal of Applied
Physics 111: 07C316.
Jansen, R.
2012. Silicon spintronics. Nature Materials 11: 400-408.
Jiang, K.M.,
Zhang, R., Yang, J., Yue, C-X. & Sun, Z-Y. 2010. Tunneling
magnetoresistance properties in ballistic spin field-effect transistors. IEEE
Transactions on Electron Devices 57: 2005.
Landauer, R. 1957. Spatial variation of currents and
fields due to localized scatterers in metallic conduction. IBM Journal of
Research and Development 1(3): 223-231.
Nestoklon,
M.O., Ivchenko, E.L., Jancu, J-M. & Voisin, P. 2008. Electric field effect
on electron spin splitting in SiGe/Si quantum wells. Physical Review B 77(15):
155328.
Osintsev,
D., Sverdlov, V., Stanojevic, Z., Makarov, A., Weinbub, J. & Selberherr, S.
2011. Properties of silicon ballistic spin fin-based field-effect transistors. Proceedings
219th Meeting of the Electrochemical Society, Advanced
Semiconductor-on-Insulator Technology and Related Physics 35: 277.
Prada, M., Klimeck, G. & Joynt, R. 2011. Spin-orbit
splittings in Si/SiGe quantum wells: from ideal Si membranes to realistic
heterostructures. New Journal of Physics 13: 013009.
Rashba, E.I.
1960. Properties of semiconductors with an extremum loop. Fizika Tverdogo
Tela. 2: 1109.
Sugahara, S.
& Nitta, J. 2010. Spin-transistor electronics: An overview and outlook. Proceedings of the IEEE 98(12).
Tsuchiya,
H., Ando, H., Sawamoto, S., Maegawa, T., Hara, T., Yao, H. & Ogawa, M.
2010. Comparisons of performance potentials of silicon nanowire and graphene
nanoribbon MOSFETs considering first-principles bandstructure effects. IEEE
Transactions on Electron Devices 57: 406.
Wilamowski,
Z. & Jantsch, W. 2004. Suppression of spin relaxation of conduction
electrons by cyclotron motion, Physical Review B 69(3): 035328.
*Pengarang untuk surat-menyurat;
email: osintsev@iue.tuwien.ac.at
|