Sains Malaysiana 42(3)(2013):
347–358
A
Step Variational Iteration Method for Solving Non-Chaotic and Chaotic Systems
(Kaedah Lelaran
Ubahan Langkah bagi Menyelesaikan Sistem Kalut dan Tak Kalut)
R. Yulita Molliq* *
Department of Mathematics, Faculty of Mathematics and Natural
Science, Universitas Negeri Medan
20221 Medan, Sumatera Utara, Indonesia
M.S.M. Noorani & R.R. Ahmad
School of Mathematical Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia
A.K. Alomari
Department
of Mathematics, Faculty of Science, Hashemite University 13115 Zarqa, Jordan
Diserahkan:
25 Mei 2010/Diterima: 17 September 2012
ABSTRACT
In this paper, a new reliable method
called the step variational iteration method (SVIM)
based on an adaptation of the variational iteration method (VIM)
is presented to solve non–chaotic and chaotic systems. The SVIM uses the general Lagrange
multipliers for constructing the correction functional for the problems. The SVIM yields a step analytical
solution of the form of a rapidly convergent infinite power series with easily
computable terms and obtain a good approximate solution for larger intervals.
The accuracy of the presented solution obtained is in an excellent agreement
with the previously published solutions.
Keywords: Chaotic and non-chaotic
systems; Lagrange multiplier; multistage variational iteration method; step
variational iteration method; variational iteration method
ABSTRAK
Dalam kertas ini, kaedah baru
dinamakan kaedah lelaran ubahan langkah (KLUL)
berasaskan satu adaptasi kaedah lelaran ubahan digunakan untuk sistem tak-kalut
dan kalut. KLUL menggunakan
pendarab Lagrange umum untuk membina fungsian pembetulan bagi mengatasi masalah
berkenaan. KLUL menghasilkan
penyelesaian analisis dalam bentuk siri kuasa tak terhingga yang menumpu pantas
dengan sebutan yang mudah dikira. Penyelesaian
penghampiran diperoleh adalah baik untuk selang yang lebih besar. Ketepatan penyelesaian yang diperoleh adalah sangat baik bila dibandingkan
dengan penyelesaian yang terdahulu.
Kata kunci: Kaedah lelaran ubahan;
kaedah lelaran ubahan langkah; kaedah lelaran ubahan multitahap; sistem
tak-kalut dan kalut; pendarab Lagrange
RUJUKAN
Alomari,
A.K., Noorani, M.S.M. & Nazar, R. 2009. Adaptation of
homotopy analysis method for the numeric-analytic solution of Chen system. Commun. Nonlinear Sci. Numer. Simulat. 14: 2336-2346.
Alomari,
A.K., Noorani, M.S.M. & Nazar, R. & Li, C.P. 2010. Homotopy
analysis method for solving fractional Lorenz system. Commun.
Nonlinear Sci. Numer. Simulat. 15(7): 1864-1872.
Batiha, B., Noorani, M.S.M. & Hashim, I. 2007a. Variational iteration method for solving multispecies
Lotka–Volterra equations. Comput. Math. Appl. 54: 903-909.
Batiha, B., Noorani, M.S.M. & Hashim, I. 2007b. The multistage variational iteration method for class of nonlinear
system of ODEs. Phys. Scr. 78: 388-392.
Chowdhury,
M.S.H. & Hashim, I. 2009. Application of multistage
homotopy-perturbation method for the solutions of the Chen system. Nonlinear
Anal. Real World Anal. 10(1): 381-391.
Chowdhury,
M.S.H., Hashim, I. & Momani, S. 2009. The multistage homotopy-perturbation
method: A powerful scheme for handling the Lorenz system. Chaos Solitons
& Fractals 40(4): 1929-1937.
Faraz, N., Khan, Y. & Austin, F. 2010. An
alternative approach to differential-difference equations using the variational
iteration method, Zeitschrift fur Naturforschung - Section A J. Phys. Sci.
65(12): 1055-1059.
Faraz, N., Khan, Y. & Yildirim, A. 2011. Analytical approach to two-dimensional viscous flow with a
shrinking sheet via variational iteration algorithm-II. J. King Saud
University (Sci.) 23: 77-81.
Finlayson,
B.A. 1972. The Method of Weighted Residuals and
Variational Principles. New York: Academic Press.
Genesio, R.
& Tesi, A. 1992. A harmonic balance methods for
the analysis of chaotic dynamics in nonlinear systems. Automatica 28:
531-548.
Goh, S.M., Noorani, M.S.M. & Hashim, I. 2009a. Efficiency of variational iteration method for chaotic Genesio
system-Classical and multistage approach. Chaos Solitons &
Fractals 40: 2152-2159.
Goh,
S.M., Noorani, M.S.M. & Hashim, I. 2009b. A new
application of variational iteration method for the chaotic Rössler system. Chaos Solitons Fractals 42(3): 1604-1610.
Goh, S.M.,
Noorani, M.S.M. & Hashim, I. 2008. Prescribing a multistage analytical
method to a prey-predator dynamical system. Phys. Lett. A 373: 107-110.
He, J.H. 1997a. Semi-inverse method of establishing
generalized principles for fluid mechanics with emphasis on turbomachinery
aerodynamics. Int. J. Turbo Jet–Engines 14: 23-28.
He, J.H. 1997b. Variational iteration method for
delay differential equations. Commun. Nonlinear Sci. Numer. Simulat. 2:
235-236.
He, J.H. 1998. Approximate analytical solutions
for seepage flow with fractional derivatives in porous media. Comput.
Methods Appl. Mech. Engrg. 167(1-2): 57-68.
He, J.H. & Wu, X.H. 2007. Variational iteration
method: New developments and applications. Comput. Math. Appl. 54:
881-894.
He, J.H. & Wu, X.H. 2006. Construction
of solitary solution and compaction-like solution by variational iteration
method. Chaos, Solitons & Fractals 29(1): 108-113.
He, J.H. 2007. The variational iteration method
for eighth-order initial boundary value problems, Phys. Scr. 76(6):
680-682.
Inokuti, M., Sekine, H. & Mura, T. 1978. General use of the Lagrange multiplier in nonlinear mathematical
physics. In: Nemat-Naseer, S. (ed.) Variational Method in the
Mechanics of Solids New York: Pergamon Press. pp. 156-162.
Ivancevic,
V.G. & Ivancevic, T.T. 2008. Complex Nonlinearity: Chaos, Phase
Transitions, Topology Change, and Path Integrals. New York: Springer.
Khan, Y., Faraz, N., Yildirim, A. & Wu, Q. 2011. Fractional variational iteration method for fractional
initial-boundary value problems arising in the application of nonlinear
science. Comput. Math. Appl. 62: 2273-2278.
Noorani, M.S.M., Hashim, I., Ahmad, R., Bakar, S.A., Ismail, E.S.
& Zakaria, A.M. 2007. Comparing numerical methods for the
solutions of the Chen system. Chaos Solitons & Fractals 32:
1296-304.
Rangkuti,
Y.M. & Noorani, M.S.M. 2012. The exact solution of delay differential
equations using coupling variational iteration with taylor series and small term. Bull. Math. 4(1): 1-15.
Rössler,
O.E. 1976. An equation for continuous chaos. Phys
Lett A. 573: 97-398.
Serletis, A.
& Gogas, P. 1997. Chaos in east European black market
exchange rates. Research Economics 51(4): 359-385.
Serletis, A.
& Gogas, P. 2000. Purchasing power parity nonlinearity and chaos. Appl.
Financial Economics 10(6): 615-622.
Serletis, A.
& Gogas, P. 1999. The north American gas markets
are chaotic. Energy J. 20: 83-103.
Werndl, C.
2009. What are the new implications of chaos for unpredictability? The
British J. Phil. Sci. 60(1): 195-220.
Yulita Molliq, R., Noorani, M.S.M. & Hashim, I. 2009a. Variational iteration method for fractional heat–and
wave–like equations. Nonlinear Anal. Real World Appl.
10(3): 1854-1869.
Yulita Molliq, R., Noorani, M.S.M., Hashim, I. & Ahmad, R.R.
2009b. Variational iteration method for fractional
Zakhanov–Kuznetsov equations. J. Comput. Appl. Math. 233:
103-108.
Yulita Molliq, R. &
Batiha, B. 2012. Approximate analytic solutions of fractional
Zakharov-Kuznetsov equations by fractional complex transform. Int. J. Engin.
Tech. 1(1): 1-13.
*Pengarang untuk surat-menyurat;
email: yulitamolliq@yahoo.com
|