Sains Malaysiana 42(4)(2013): 509–514

 

Reactivity Ratio Determination of Newly Synthesized Copolymers from Glycidyl Methacrylate and Tetrahydrofurfuryl Acrylate

(Penentuan Nisbah Kereaktifan Kopolimer Baru yang Disintesis daripada Glisidil Metakrilat dan Tetrahidrofurfuril Akrilat)

 

 

Ahmad Danial Azzahari, Rosiyah Yahya* & Aziz Hassan

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Diserahkan: 23 Jun 2011 / Diterima: 23 Mac 2012

 

 

ABSTRACT

Copolymers from different feed compositions of glycidyl methacrylate (GMA) and tetrahydrofurfuryl acrylate (THFA) were synthesized using free radical polymerization in toluene solution at 70±1°C using benzoyl peroxide (BPO) as initiator. The polymers were characterized by 1H NMR,13C NMR and DEPT spectroscopic techniques. The copolymer compositions were determined using 1H NMR analysis. Reactivity ratios for GMA and THFA were determined by the Kelen-Tudos, Tidwell-Mortimer and error-in-variables model methods. The results showed that all these copolymerizations were strictly linear systems describable by the Mayo-Lewis equation based on the terminal model and that accurate reactivity ratio data can be obtained.

 

Keywords: Copolymerization; glycidyl methacrylate; reactivity ratios; tetrahydrofurfuryl acrylate

 

ABSTRAK

 

Kopolimer daripada komposisi glisidil metakrilat (GMA) dan tetrahidrofurfuril akrilat (THFA) telah disintesis dengan menggunakan pempolimeran radikal bebas dalam larutan toluena pada 70±1°C menggunakan benzoyl peroksida (BPO) sebagai pemula. Kopolimer ini dicirikan oleh teknik spektroskopi1H NMR, 13C NMR dan DEPT. Nisbah kereaktifan untuk GMA dan THFA telah ditentukan oleh kaedah Kelen-Tudos, Tidwell-Mortimer dan model ralat-dalam-pemboleh ubah. Keputusan menunjukkan bahawa semua kopolimerisasi ini merupakan sistem linear yang boleh diterangkan oleh persamaan Mayo-Lewis berdasarkan model terminal dan data nisbah kereaktifan yang tepat boleh diperoleh.

 

Kata kunci: Glisidil metakrilat; kopolimerisasi; nisbah kereaktifan; tetrahidrofurfuril akrilat

 

RUJUKAN

 

Adhikari, B. & Majumdar, S. 2004. Polymers in sensor applications. Progress in Polymer Science 29(7): 699-766.

ArIca, M.Y., Bayramog lu, G. & Biçak, N. 2004. Characterisation of tyrosinase immobilised onto spacer-arm attached glycidyl methacrylate-based reactive microbeads. Process Biochemistry 39(12): 2007-2017.

Bakhshi, H., Zohuriaan-Mehr, M.J., Bouhendi, H. & Kabiri, K. 2009. Spectral and chemical determination of copolymer composition of poly (butyl acrylate-co-glycidyl methacrylate) from emulsion polymerization. Polymer Testing 28(7): 730-736.

Bayramoglu, G., Akgöl, S., Bulut, A., Denizli, A. & ArIca, M.Y. 2003. Covalent immobilisation of invertase onto a reactive film composed of 2-hydroxyethyl methacrylate and glycidyl methacrylate: Properties and application in a continuous flow system. Biochemical Engineering Journal 14(2): 117-126.

Box, G.E.P. 1958. Problemes dexperimentation. Bulletin de l’Institut international de statistique 36: 215.

Box, G.E.P., Hunter, W.G. & Hunter, J.S. 1978. Statistics for Experiments. New York: John Wiley & Sons.

Espinosa, M.H., del Toro, P.J.O. & Silva, D.Z. 2001. Microstructural analysis of poly(glycidyl methacrylate) by 1Hand 13C NMR spectroscopy. Polymer 42(8): 3393-3397.

Fineman, M. & Ross, S.D. 1950. Linear method for determining monomer reactivity ratios in copolymerization. Journal of Polymer Science 5(2): 259-262.

Ghi, P.Y., Hill, D.J.T. & Whittaker, A.K. 1999. A study of the copolymerization of hydroxyethyl methacrylate and tetrahydrofurfuryl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry 37(19): 3730-3737.

Grassie, N., Torrance, B.J.D., Fortune, J.D. & Gemmell, J.D. 1965. Reactivity ratios for the copolymerization of acrylates and methacrylates by nuclear magnetic resonance spectroscopy. Polymer 6(12): 653-658.

Hall, C.E., Datta, D. & Hall, E.A.H. 1996. Parameters which influence the optimal immobilisation of oxidase type enzymes on methacrylate copolymers as demonstrated for amperometric biosensors. Analytica Chimica Acta 323(1-3): 87-96.

Kelen, T. & Tüdős, F. 1974. A new improved linear graphical method for determing copolymerization reactivity ratios. Reaction Kinetics and Catalysis Letters 1(4): 487-492.

Kelen, T. & Tüdős, F. 1975. Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method. Journal of Macromolecular Science: Part A - Chemistry 9(1): 1 - 27.

Malmsten, M. & Larsson, A. 2000. Immobilization of trypsin on porous glycidyl methacrylate beads: Effects of polymer hydrophilization. Colloids and Surfaces B: Biointerfaces 18(3-4): 277-284.

Mayo, F.R. & Lewis, F.M. 1944. Copolymerization. I. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate. Journal of the American Chemical Society 66(9): 1594-1601.

Nino, G.D., Turacchio, M., D’Archivio, A.A., Lora, S., Corain, B. & Antonini, G. 2004. Catalytic activity of bovine lactoperoxidase supported on macroporous poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate). Reactive and Functional Polymers 61(3): 411-419.

Odian, G.G. 2004. Principles of Polymerization. 4th ed. New Jersey: Wiley-Interscience.

Pérez, J.P.H., López-Cabarcos, E. & López-Ruiz, B. 2006. The application of methacrylate-based polymers to enzyme biosensors. Biomolecular Engineering 23(5): 233-245.

Rajendrakumar, K. & Dhamodharan, R. 2009. Ambient temperature atom transfer radical copolymerization of tetrahydrofurfuryl methacrylate and methyl methacrylate: Reactivity ratio determination. European Polymer Journal 45(9): 2685-2694.

Reilly, P.M. & Patino-Leal, H. 1981. A Bayesian study of the error-in-variables model. Technometrics 23(3): 221-231.

Reilly, P.M., Reilly, H.V. & Keeler, S.E. 1993. Algorithm AS 286: Parameter estimation in the error-in-variables model. Journal of the Royal Statistical Society. Series C (Applied Statistics) 42(4): 693-701.

Schaefer, J. 1969. Carbon-13 nuclear magnetic resonance analysis of ethylene oxide-maleic anhydride copolymers. Macromolecules 2(2): 210-214.

Tidwell, P.W. & Mortimer, G.A. 1965. An improved method of calculating copolymerization reactivity ratios. Journal of Polymer Science Part A: General Papers3(1): 369-387.

Yang, W., Hu, J., Tao, Z., Li, L., Wang, C. & Fu, S. 1999. Dispersion copolymerization of styrene and glycidyl methacrylate in polar solvents. Colloid and Polymer Science 277(5): 446-451.

 

 

*Pengarang untuk surat-menyurat; email: rosiyah@um.edu.my

 

 

 

sebelumnya