Sains Malaysiana 42(4)(2013): 529–535

 

Molecularly Imprinted Polymer Synthesis Using RAFT Polymerisation

(Sintesis Polimer Molekul Tercetak Menggunakan Pempolimeran RAFT)

 

Peter A.G. Cormack* & Faizatul Shimal Mehamod

WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde

Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland

 

Faizatul Shimal Mehamod

Department of Chemical Sciences, Faculty of Science and Technology

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

 

Diserahkan: 26 Jun 2011 / Diterima: 9 Mei 2012

 

ABSTRACT

In this paper, the synthesis and characterisation of caffeine-imprinted polymers are described. The polymers were prepared in monolithic form via both reversible addition-fragmentation chain-transfer (RAFT) polymerisation and conventional free radical polymerisation, using methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and crosslinking agent, respectively. The potential benefits in applying RAFT polymerisation techniques towards the synthesis of molecularly imprinted polymers (MIPs) are explored and elucidated. The pore structures of the polymers produced were characterised by nitrogen sorption porosimetry and the molecular recognition properties of representative products were evaluated in high-performance liquid chromatography (HPLC) mode. Molecular imprinting effects were confirmed by analysing the relative retentions of analytes on imprinted and non-imprinted HPLC stationary phases. It was found that a caffeine-imprinted polymer synthesised by RAFT polymerisation was superior to a polymer prepared using a conventional synthetic approach; the imprinting factor and column efficiency were found to be higher for the former material.

 

Keywords: Caffeine; molecular recognition; molecularly imprinted polymers; novel stationary phases; RAFT polymerisation

 

ABSTRAK

Dalam penyelidikan ini, sintesis dan pencirian terhadap polimer tercetak-kafein telah diterangkan. Polimer tersebut telah disediakan dalam bentuk monolitik melalui pempolimeran tambahan-fragmentasi rantai pindah boleh balik (RAFT) dan pempolimeran konvensional radikal bebas, menggunakan asid metaakrilik sebagai monomer berfungsi dan etilena glikol sebagai ejen taut silang. Potensi yang dapat dimanfaatkan dengan menggunakan teknik pempolimeran RAFT dalam sintesis polimer molekul tercetak (MIPs) telah diterokai dan difahami. Struktur liang polimer yang terhasil telah dicirikan dengan menggunakan porosimeter penyerapan nitrogen manakala pengecaman sifat molekul produk tersebut telah dinilai dalam mod kromatografi cecair berprestasi tinggi (HPLC). Hasil pencetakan molekul dikenal pasti dengan menganalisis perbezaan relatif antara puncak analit-tercetak dan analit-tidak tercetak dalam fasa gerak HPLC. Didapati polimer tercetak-kafein melalui pempolimeran RAFT adalah lebih baik daripada polimer yang disintesis melalui kaedah konvensional; kesan pencetakan dan kecekapan kolum didapati lebih tinggi bagi bahan yang pertama tadi.

 

Kata kunci: Fasa gerak terbaharu; kafein; pempolimeran RAFT; pengecaman molekul; polimer molekul tercetak

RUJUKAN

Bindushree, R., Ranjan, R. & William, J.B. 2006. Surface initiated polymerizations from silica nanoparticles. Soft Matter 2(15): 386-396.

Cormack, P.A.G. & Zurutuza-Elorza, A. 2004. Molecularly imprinted polymers: Synthesis and characterisation. J. Chromatogr. B. 804: 173-182.

Farnoosh, R. & Titirici, M.M. 2008. Thin thermo-responsive polymer films onto the pore system of chromatographic beads via reversible addition–fragmentation chain transfer polymerization. New J. Chem. 32: 1409-1414.

Georges, M.K., Veregin, R.P.N., Kazmaier, P.M. & Hamer, G.K. 1993. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 26: 2987-2988.

Goto, A. & Fukuda, T. 2004. Kinetics of living radical polymerization. Prog. Polym. Sci. 29: 329-385.

Haupt, K. & Mosbach, K. 2000. Molecularly imprinted polymers andtheir use in biomimetic sensors. Chem. Rev. 100: 2495-2504.

Hawker, C.J. 1997. Living free radical polymerization: A unique technique for the preparation of controlled macromolecular architectures. Acc. Chem. Res. 30: 373-382.

Hawker, C.J., Bosman, A.W. & Harth, E. 2001. New polymer synthesis by nitroxide mediated living radical polymerizations.Chem. Rev. 101: 3661-3688.

Kempe, M. & Mosbach, K. 1995. Molecular imprinting used for chiral separations. J. Chromatogr. A. 694: 3-13.

Lai, E.P.C., Fafara, A., Vander Noot, V.A., Kono, M. & Polosky, B. 1998. Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and xanthine. Can. J. Chem. 76: 265-273.

Liu, B., Algy, K., James, T.G. & Perrier, S. 2005. Influence of reaction parameters on the synthesis of hyperbranched polymers via reversible addition fragmentation chain transfer (RAFT) polymerization. Polymer 46: 6293-6299.

Lu, C.H., Zhou, W.H., Han, B., Yang, H.H., Chen, X. & Wang, X.R. 2007. Surface-imprinted core-shell nanoparticles for sorbent assays. Anal. Chem. 79: 5457-5461.

Malic, N. & Evans, R.A. 2006. Synthesis of carboxylic acid and ester mid-functionalised polymers via RAFT polymerisation and ATRP. Aust. J. Chem. 59: 763-768.

Matyjaszewski, K. & Xia. J. 2001. Atom transfer radical polymerization. Chem. Rev. 101: 2921-2990.

Mayadunne, R.T.A., Rizzardo, E., Chiefari, J., Chong, Y.K., Moad, G. & Thang, S.H. 1999. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents. Macromolecules 32: 6977-6980.

McLeary, J.B. & Klumperman, B. 2006. RAFT mediated polymerisation in heterogeneous media. Soft Matter 2: 45-53.

Moad, G., Chiefari, J., Chong, Y.K., Krstina, J., Mayadunne, R.T.A., Postma, A., Rizzardo, E. & Thang, S.H. 2000. Living free radical polymerization with reversible addition - fragmentation chain transfer (the life of RAFT). Polym. Int. 49: 993-1001.

Moad, G., Chong, Y.K., Postma, A., Rizzardo, E. & Thang, S.H. 2005. Advances in RAFT polymerization: The synthesis of polymers with defined end-groups. Polymer 46: 8458-8468.

Moad, G., Rizzardo, E. & Thang, S.H. 2005. Living radical polymerization by the RAFT process. Aust. J. Chem. 58: 379-410.

Moad, G., Rizzardo, E. & Thang, S.H. 2008. Advances in RAFT polymerization: The synthesis of polymers with defined end-groups. Polymer 49: 1079-1131.

Monteiro, M.J. & de Brouwer, H. 2000. Intermediate radical termination as the mechanism for retardation in reversible addition−fragmentation chain transfer polymerization. Macromolecules 34: 349-352.

O’Connor, N.A., Paisner, D.A., Huryn, D. & Shea, K.J. 2007. Screening of 5HT1A receptor antagonists using molecularly imprinted polymers. J. Am. Chem. Soc.129: 1680-1689.

Pan, G., Zu, B., Guo, X., Zhang, Y., Li, C. & Zhang, H. 2009. Preparation of molecularly imprinted polymer microspheres via reversible addition-fragmentation chain transfer precipitation polymerization. Polymer 50: 2819-2825.

Perrier, S., Davis, T.P., Carmichael, A.J. & Haddleton, D.M. 2003. Reversible addition-fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexfluorophosphate. Eur. Pol. J. 39: 417-422.

Perrier, S. & Takolpuckdee, P. 2005. Macromolecular design via reversible addition–fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J. Polym. Sci., Part A: Polym. Chem. 43: 5347-5393.

Peters, E.C., Svec, F., Fréchet, J.M.J., Viklund, C. & Irgum, K. 1999. Control of porous properties and surface chemistry in ‘molded’porous polymer monoliths prepared by polymerization in the presence of TEMPO. Macromolecules 32: 6377-6379.

Philip, C.M. & Mathew, B. 2008. Design of EGDMA-crosslinked theophylline imprinted polymer with high specificity and selectivity. J. Macromol. Sci. A 45: 335-343.

Piletsky, S.A., Parhometz, Y.P., Lavryk, N.V., Panasyuk, T.L. & Elskaya, A.V. 1994. Sensors for low-weight organic-molecules based on molecular imprinting technique. Sens. Actuators B 19: 629-631.

Ramström, O. & Ansell, R.J. 1998.Molecular imprinting technology: Challenges and prospects for the future. Chirality 10: 195-209.

Skinner, J. 2002. Atom-transfer radical polymerisation of crosslinked networks. MSci Thesis. University of Strathclyde, Glasgow, Scotland (unpublished).

Southard, G.E., Van Houten, K.A., Ott. Jr. E. & Murray, G.M. 2007. Luminescent sensing of organophosphates using imprinted polymers prepared by RAFT polymerization. Anal. Chim. Acta 581: 202-207.

Theodoridis, G. & Manesiotis, P. 2002. Selective solid-phase extraction sorbent for caffeine made by molecular imprinting. J. Chromatogr. A. 948: 163-169.

Thoelen, R., Velt, R.V., Duchateau, J., Horemans, F., Haen, J.D., Lutsen, L., Vanderzande, D., Ameloot, M., Ven, M.V., Cleij, T.J. & Wagner, P. 2008. A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosens. Bioelectron. 23: 913-918.

Titirici, M.M. & Sellergren, B. 2006. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chem. Mater.18: 1773-1779.

Vana, P., Davis, T.P. & Barner-Kowollik, C. 2002. Kinetic analysis of reversible addition fragmentation chain transfer (RAFT) polymerizations: Conditions for inhibition, retardation and optimum living polymerization. Macromol. Theory Simul. 11: 823-835.

Viklund, C., Nordström, A., Irgum, K., Svec, F. & Fréchet, J.M.J. 2001. Preparation of porous poly(styrene-co-divinylbenzene) monoliths with controlled pore size distributions initiated by stable free radicals and their pore surface functionalization by grafting. Macromolecules 34: 4361-4369.

Ye, L., Weiss, R. & Mosbach, K. 2000. Synthesis and characterization of molecularly imprinted microspheres. Macromolecules 33: 8239-8245.

Yoshimi, Y., Ohdaira, R., Iiyama, C. & Sakai, K. 2001. Gate effect of thin layer of molecularly-imprinted poly(methacrylic acid-co-ethyleneglycol dimethacrylate). Sens. Actuators B. 73: 49-53.

 

*Pengarang untuk surat-menyurat; email: Peter.Cormack@strath.ac.uk

 

 

 

sebelumnya