Sains Malaysiana 42(6)(2013):
725–735
Inhibition of GSK3 Attenuates the Intracellular
Multiplication of Burkholderia pseudomallei and Modulates the
Inflammatory Response in Infected Macrophages and A549
Epithelial Lung Cells
(Perencatan GSK3 Mengurangkan Penggandaan B. pseudomallei Intrasel dan Memodulasi Respons
Inflamasi dalam Makrofaj dan Sel Peparu Epitelium A549 Terinfeksi)
Pramila Maniam, Aishah Farliani Shirat, Hasidah Mohd Sidek, Ghazally Ismail
& Noor Embi*
School
of Biosciences and Biotechnology, Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E. Malaysia
Diserahkan: 13 Jun 2012/Diterima: 18 September
2012
ABSTRACT
Burkholderia pseudomallei, the causative agent of melioidosis,
is an intracellular pathogen capable of invading and multiplying in both
phagocytic and non-phagocytic cells. Infection results in an inflammatory
response involving production of both pro- and anti-inflammatory cytokines. The
cellular mechanism regulating this response, believed to play an important role
in the pathogenesis of meliodoisis, is not fully understood. In recent years,
glycogen synthase kinase-3 (GSK3) has been shown to assume a pivotal role
in regulating production of these cytokines. Bacterial infection of host cells
activates Toll-like receptors (TLRs) and results in the phosphorylation of GSK3β
through activation of the phosphoinositide 3-kinase (PI3K) pathway. In this
study, we investigated the effects of GSK3 inhibition in regulating B. pseudomallei-induced
inflammatory response in macrophages and A549 epithelial lung cells. Our
results showed that infection of cells with B. pseudomallei resulted in the
increase of anti-inflammatory cytokine, IL-10 and pro-inflammatory cytokine, TNF-α.
Pre-treatment of infected cells with GSK3 inhibitors caused further increase in the
level of IL-10
but a significant decrease in TNF-α. These changes corresponded with
the detection of phosphorylated GSK3β in infected cells treated with
LiCl; suggesting that modulation of inflammatory response in B.
pseudomallei infection involves phosphorylation of GSK3β (Ser 9). This
could explain our observations from the invasion assays that pre-treatment of B.
pseudomallei-infected cells with GSK3 inhibitors resulted in decreased
intracellular replication of bacteria within macrophages and A549 epithelial
lung cells. In summary, our results demonstrate a regulatory function of GSK3
in the modulation of cytokine levels during B. pseudomallei infection.
Keywords: Burkholderia
pseudomallei; glycogen synthase kinase-3; inflammation; macrophage;
melioidosis
ABSTRAK
Burkholderia pseudomallei, patogen penyebab melioidosis
merupakan bakteria intrasel yang mampu menginfeksi dan mengganda dalam sel
fagosit serta sel bukan fagosit. Infeksi mengakibatkan respons inflamasi yang
melibatkan penghasilan sitokin pro- dan anti-inflamasi. Mekanisme pengawalan
respons tersebut yang dipercayai memainkan peranan penting dalam patogenesis
melioidosis masih belum difahami sepenuhnya. Glikogen sintase kinase-3 (GSK3)
kini diketahui mempunyai peranan utama dalam pengawalan penghasilan sitokin
pro- dan anti-inflamasi. Infeksi sel hos oleh bakteria mengaktifkan reseptor Toll-like (TLR)
dan mencetuskan pemfosfatan GSK3β melalui pengaktifan tapak jalan
fosfoinositid-3-kinase (PI3K). Kami mengkaji kesan perencatan GSK3
dalam pengawalan respons inflamasi yang diaruh oleh B. pseudomallei dalam makrofaj
dan sel epitelium peparu A549. Hasil yang kami peroleh menunjukkan peningkatan
penghasilan sitokin anti-inflamasi, IL-10 dan sitokin pro-inflamasi, TNF-α
dalam sel diinfeksi B. pseudomallei. Pra-perlakuan sel terinfeksi dengan
perencat GSK3
menyebabkan aras sitokin IL-10 meningkat dengan lebih tinggi tetapi
penghasilan TNF-α
berkurangan secara signifikan. Perubahan aras sitokin IL-10 dan TNF-α berpadanan
dengan pengesanan GSK3β terfosfat dalam sel diinfeksi yang
diberi perlakuan LiCl. Ini mencadangkan bahawa modulasi respons inflamasi
semasa infeksi B. pseudomallei melibatkan pemfosfatan GSK3β (Ser 9). Ini
juga menjelaskan cerapan daripada asai penaklukan yang menunjukkan pra-perlakuan perencat GSK3
menyebabkan pengurangan penggandaan bakteria intrasel dalam makrofaj dan sel
epitelium peparu A549 yang diinfeksi B. pseudomallei. Secara keseluruhan
hasil kami menunjukkan GSK3 terlibat dalam modulasi aras sitokin
semasa sel diinfeksi B. pseudomallei.
Kata kunci: Burkholderia
pseudomallei; glikogen sintase kinase-3; inflamasi; makrofaj; melioidosis
RUJUKAN
Arjcharoen, S., Wikraiphat, C., Pudla, M.,
Limposuwan, K., Woods, D., Sirisinha, S. & Utaisincharoen, P. 2007. Fate of
a Burkholderia pseudomallei lipopolysaccharide mutant in the mouse
macrophage cell line RAW 264.7: Possible role for the O-antigenic polysaccharide
moiety of lipopolysaccharide in internalization and intracellular survival. Infection
and Immunity 75(9): 4298-4304.
Brunda, M.J. 1994. Interleukin-12. Journal of
Leukocyte Biology 55(2): 280-288.
Chan, M.M.P., Cheung, B.K.W., Li, J.C.B., Chan, L.L.Y.
& Lau, A.S.Y. 2009. A role for glycogen synthase kinase-3 in antagonizing
mycobacterial immune evasion by negatively regulating IL-10 induction. Journal
of Leukocyte Biology 86(2): 283-291.
Charpentier, X., Gabay, J.E., Reyes, M., Zhu,
J.W., Weiss, A. & Shuman, H.A. 2009. Chemical genetics reveals bacterial
and host cell functions critical for type IV effector translocation by
Legionella pneumophila. PLoS Pathogens 5(7): e1000501.
Cheng, Y.L., Wang, C.Y., Huang, W.C., Tsai,
C.C., Chen, C.L., Shen, C.F., Chi, C.Y. & Lin, C.F. 2009. Staphylococcus
aureus induces microglial inflammation via a glycogen synthase kinase 3
{beta}-regulated pathway. Infection and Immunity 77(9): 4002-4008.
Coant, N., Simon-Rudler, M., Gustot, T., Fasseu,
M., Gandoura, S., Ragot, K., Abdel-Razek, W., Thabut, D., Lettéron, P. &
Ogier-Denis, E. 2011. Glycogen synthase kinase-3 involvement in the excessive
proinflammatory response to LPS in patients with decompensated cirrhosis. Journal
of Hepatology 55: 784-793.
Cohen, P. & Frame, S. 2001. The renaissance
of GSK3. Nature Reviews Molecular Cell Biology 2(10): 769-776.
Cole, L.E., Santiago, A., Barry, E., Kang, T.J.,
Shirey, K.A., Roberts, Z.J., Elkins, K.L., Cross, A.S. & Vogel, S.N. 2008.
Macrophage proinflammatory response to Francisella tularensis live
vaccine strain requires coordination of multiple signaling pathways. The
Journal of Immunology 180(10): 6885-6891.
Dalmas, E., Tordjman, J., Guerre-Millo, M. &
Clément, K. 2012. Macrophages and Inflammation. In Adipose Tissue Biology,
edited by Symonds, M. E., New York: Springer, pp. 167-193.
Duan, Y., Liao, A.P., Kuppireddi, S., Ye, Z.,
Ciancio, M.J. & Sun, J. 2007. β-Catenin activity negatively regulates
bacteria-induced inflammation. Laboratory Investigation 87(6): 613-624.
Dugo, L., Abdelrahman, M., Murch, O., Mazzon,
E., Cuzzocrea, S. & Thiemermann, C. 2006. Glycogen synthase kinase-3 [beta]
inhibitors protect against the organ injury and dysfunction caused by
hemorrhage and resuscitation Shock 25(5): 485-491.
Duronio, V. 2008. The life of a cell: Apoptosis
regulation by the PI3K/PKB pathway. Biochemical Journal 415: 333-344.
Elsinghorst, E.A. 1994. Measurement of invasion
by gentamicin resistance. Methods in Enzymology 236: 405-420.
Elson, G., Dunn-Siegrist, I., Daubeuf, B. &
Pugin, J. 2007. Contribution of Toll-like receptors to the innate immune
response to Gram-negative and Gram-positive bacteria. Blood 109(4):
1574-1583.
Embi, N., Rylatt, D.B. & Cohen, P. 1980.
Glycogen synthase kinase-3 from rabbit skeletal muscle. European Journal of
Biochemistry 107(2): 519-527.
Fukao, T., Yamada, T., Tanabe, M., Terauchi, Y.,
Ota, T., Takayama, T., Asano, T., Takeuchi, T., Kadowaki, T. & Hata, J.
2002. Selective loss of gastrointestinal mast cells and impaired immunity in
PI3K-deficient mice. Nature Immunology 3(3): 295-304.
Gong, L., Cullinane, M., Treerat, P., Ramm, G.,
Prescott, M., Adler, B., Boyce, J.D. & Devenish, R.J. 2011. The Burkholderia
pseudomallei type III secretion system and BopA are required for evasion of
LC3-associated phagocytosis. PLoS One 6(3): e17852.
Hii, C.S., Sun, G.W., Goh, J.W.K., Lu, J.,
Stevens, M.P. & Gan, Y.H. 2008. Interleukin-8 induction by Burkholderia
pseudomallei can occur without Toll-like receptor signaling but requires a
functional type III secretion system. Journal of Infectious Diseases 197(11):
1537-1547.
Ho, M., Schollaardt, T., Smith, M.D., Perry,
M.B., Brett, P.J., Chaowagul, W. & Bryan, L.E. 1997. Specificity and
functional activity of anti-Burkholderia pseudomallei polysaccharide
antibodies. Infection and Immunity 65(9): 3648-3653.
Ireton, K., Payrastre, B., Chap, H., Ogawa, W.,
Sakaue, H., Kasuga, M. & Cossart, P. 1996. A role for phosphoinositide
3-kinase in bacterial invasion. Science 274(5288): 780-782.
Ismail, G., M. Noor Embi, Omar, O. & Razak,
N. 1987. Toxigenic properties of Pseudomonas pseudomallei extracellular
products. Tropical Biomedicine 4: 101-110.
Ismail, G., Razak, N., Mohamed, R., Embi, N.
& Omar, O. 1988. Resistance of Pseudomonas pseudomallei to normal
human serum bactericidal action. Microbiology and Immunology 32(7):
645-652.
Jope, R.S., Yuskaitis, C.J. & Beurel, E.
2007. Glycogen synthase kinase-3 (GSK3): Inflammation, diseases, and
therapeutics. Neurochemical Research 32(4): 577-595.
Kespichayawattana, W., Intachote, P.,
Utaisincharoen, P. & Sirisinha, S. 2004. Virulent Burkholderia
pseudomallei is more efficient than avirulent Burkholderia thailandensis in invasion of and adherence to culture human epithelial cells. Microbial
Pathogenesis 36: 287-292.
Krauß, M. & Haucke, V. 2007.
Phosphoinositide-metabolizing enzymes at the interface between membrane traffic
and cell signalling. EMBO Reports 8(3): 241-246.
Kwok, T., Zabler, D., Urman, S., Rohde, M.,
Hartig, R., Wessler, S., Misselwitz, R., Berger, J., Sewald, N. & König, W.
2007. Helicobacter exploits integrin for type IV secretion and kinase
activation. Nature 449(7164): 862-866.
Lindmo, K. & Stenmark, H. 2006. Regulation of
membrane traffic by phosphoinositide 3-kinases. Journal of Cell Science 119(4):
605-614.
Matsuura, M., Kawahara, K., Ezaki, T. &
Nakano, M. 1996. Biological activities of lipopolysaccharide of Burkholderia
(Pseudomonas) pseudomallei. FEMS Microbiology Letters 137(1): 79-83.
Miettinen, M., Matikainen, S., Vuopio-Varkila,
J., Pirhonen, J., Varkila, K., Kurimoto, M. & Julkunen, I. 1998.
Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and gamma
interferon production in human peripheral blood mononuclear cells. Infection
and Immunity 66(12): 6058-6062.
Mohamed, R., Nathan, S., Embi, N., Razak, N.
& Ismail, G. 1989. Inhibition of macromolecular synthesis in cultured
macrophages by Pseudomonas pseudomallei exotoxin. Microbiology and
Immunology 33(10): 811-820.
Morris, S.C., Madden, K.B., Adamovicz, J.J.,
Gause, W.C., Hubbard, B.R., Gately, M.K. & Finkelman, F.D. 1994. Effects of
IL-12 on in vivo cytokine gene expression and Ig isotype selection. The
Journal of Immunology 152(3): 1047-1056.
Novem, V., Shui, G., Wang, D., Bendt, A.K., Sim,
S.H., Liu, Y., Thong, T.W., Sivalingam, S.P., Ooi, E.E. & Wenk, M.R. 2009.
Structural and biological diversity of lipopolysaccharides from Burkholderia
pseudomallei and Burkholderia thailandensis. Clinical and Vaccine
Immunology 16(10): 1420-1428.
Ohtani, M., Nagai, S., Kondo, S., Mizuno, S.,
Nakamura, K., Tanabe, M., Takeuchi, T., Matsuda, S. & Koyasu, S. 2008.
Mammalian target of rapamycin and glycogen synthase kinase 3 differentially
regulate lipopolysaccharide-induced interleukin-12 production in dendritic
cells. Blood 112(3): 635-643.
Pfeffer, K. 2003. Biological functions of tumor
necrosis factor cytokines and their receptors. Cytokine & Growth Factor
Reviews 14(3-4): 185-191.
Phewkliang, A., Wongratanacheewin, S. &
Chareonsudjai, S. 2010. Role of Burkholderia pseudomallei in the
invasion, replication and induction of apoptosis in human epithelial cell
lines. Southeast Asian Journal of Tropica Medicine in Public Health 41(5):
1164-1176.
Razak, N. & Ismail, G. 1982. Interaction of
human polymorphonuclear leukocytes with Pseudomonas pseudomallei. Journal of
General and Applied Microbiology 28(6): 509-518.
Sauvonnet, N., Lambermont, I., Bruggen, P. &
Cornelis, G.R. 2002. YopH prevents monocyte chemoattractant protein 1
expression in macrophages and T-cell proliferation through inactivation of the
phosphatidylinositoI 3-kinase pathway. Molecular Microbiology 45(3):
805-815.
Tachado, S.D., Samrakandi, M.M. & Cirillo,
J.D. 2008. Non-opsonic phagocytosis of Legionella pneumophila by
macrophages is mediated by phosphatidylinositol 3-kinase. PLoS One 3(10):
e3324.
Toker, A. & Cantley, L.C. 1997. Signalling
through the lipid products of phosphoinositide-3-OH kinase. Nature 387(6634):
673-676.
Tracey, M. & Cerami, A. 1994. Tumor necrosis
factor: A pleiotropic cytokine and therapuetic target. Annual Review of
Medicine 45(1): 491-503.
Utaisincharoen, P., Arjcharoen, S.,
Lengwehasitit, I., Limposuwan, K. & Sirisinha, S. 2004. Burkholderia
pseudomallei stimulates low interleukin-8 production in human lung
epithelial cell line A549. Clinical & Experimental Immunology 138:
61-65.
Valvano, M.A., Keith, K.E. & Cardona, S.T.
2005. Survival and persistence of opportunistic Burkholderia species in
host cells. Current Opinion in Microbiology 8(1): 99-105.
Wand, M., Muller, C., Titball, R. & Michell,
S. 2011. Macrophage and Galleria mellonella infection models reflect the
virulence of naturally occurring isolates of B. pseudomallei, B.
thailandensis and B. oklahomensis. BMC Microbiology 11(1):
11.
Wang, H., Brown, J. & Martin, M. 2010.
Glycogen synthase kinase 3: A point of convergence for the host inflammatory
response. Cytokine 53(2): 130-140.
Weber, S.S., Ragaz, C. & Hilbi, H. 2009.
Pathogen trafficking pathways and host phosphoinositide metabolism. Molecular
Microbiology 71(6): 1341-1352.
West, T.E., Ernst, R., Jansson-Hutson, M. &
Skerrett, S. 2008. Activation of Toll-like receptors by Burkholderia
pseudomallei. BMC Immunology 9(1): 46.
White, N. 2003. Melioidosis. The Lancet 361(9370):
1715-1722.
Wiersinga,
W.J., Van der Poll, T., White, N.J., Day, N.P. & Peacock, S.J. 2006.
Melioidosis: Insights into the pathogenicity of Burkholderia pseudomallei. Nature Reviews Microbiology 4(4): 272-282.
Wiersinga,
W.J., Wieland, C.W., Dessing, M.C., Chantratita, N., Cheng, A.C.,
Limmathurotsakul, D., Chierakul, W., Leendertse, M., Florquin, S. & De Vos,
A.F. 2007. Toll-like receptor 2 impairs host defense in gram-negative sepsis
caused by Burkholderia pseudomallei (Melioidosis). PLoS Medicine 4(7):
e248.
Zhang,
P., Katz, J. & Michalek, S.M. 2009. Glycogen synthase kinase-3 [beta](GSK3
[beta]) inhibition suppresses the inflammatory response to Francisella
infection and protects against tularemia in mice. Molecular Immunology 46(4):
677-687.
*Pengarang untuk surat-menyurat; email: noormb@ukm.my
|